Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T09:22:39.508Z Has data issue: false hasContentIssue false

Towards High Energy Density 3D-integrated Lithium-ion Micro-batteries

Published online by Cambridge University Press:  31 January 2011

Jos F.M. Oudenhoven
Affiliation:
j.f.m.oudenhoven@tue.nl, Eindhoven University of Technology, Eindhoven, Netherlands
Loïc Baggetto
Affiliation:
l.baggetto@tue.nl, Eindhoven University of Technology, Eindhoven, Netherlands
Rogier A.H. Niessen
Affiliation:
rogier.niessen@philips.com, Philips Research Laboratories, Eindhoven, Netherlands
Harm C.H Knoops
Affiliation:
h.c.m.knoops@tue.nl, Eindhoven University of Technology, Eindhoven, Netherlands
Merijn Donders
Affiliation:
m.e.donders@tue.nl, Eindhoven University of Technology, Eindhoven, Netherlands
Teus van Dongen
Affiliation:
teus.van.dongen@philips.com, Philips Research Laboratories, Eindhoven, Netherlands
Mart de Croon
Affiliation:
m.h.j.m.de.croon@tue.nl, Eindhoven University of Technology, Eindhoven, Netherlands
Erwin Kessels
Affiliation:
W.M.M.Kessels@tue.nl, United States
Peter Notten
Affiliation:
peter.notten@philips.com, Eindhoven University of Technology, Eindhoven, Netherlands
Get access

Abstract

To investigate the feasibility of a 3D integrated all-solid-state micro-battery, the deposition of several battery materials was investigated. Deposition techniques where used that are in principle able to deposit step conformally in 3D structures: ALD was used to create a conductive Pt current collector, and LPCVD was applied for the deposition of poly-silicon anodes and LiCoO2 cathodes. The layers, initially deposited on planar substrates, showed the expected physical and electrochemical behavior and are in principle suitable for solid state micro-batteries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Notten, P.H.L., Roozeboom, F., Niessen, R.A.H., and Baggetto, L., Adv. Mater. 19, 4564 (2007).Google Scholar
2 Lärmer, F., and Schilp, A., U.S. Patent 5501893, 1996.Google Scholar
3 Wang, B., Bates, J.B., Hart, F.X., Sales, B.C., Zuhr, R.A., and Robertson, J.D., J. Electrochem. Soc. 143, 3203 (1996).Google Scholar
4 O'Sullivan, P.L., Baumann, F.H., and Gilmer, G.H., J. Appl. Phys. 88, 4061 (2000).Google Scholar
5 Dominey, L.A., Blackley, T.J., Koch, V.R., Vujic, D.R., and Schleich, D.M., IEEE 35th International Power Sources Symposium, p. 290 (1992).Google Scholar
6 Fragnaud, P., Nagarajan, R., Schleich, D.M., and Vujic, D., J. Power Sources 54, 362 (1995).Google Scholar
7 Cho, S.I., and Yoon, S.G., J. Electrochem. Soc. 149, A1584 (2002).Google Scholar
8 Knoops, H.C.M., Mackus, A.J.M., Donders, M.E., van de Sanden, M.C.M., Notten, P.H.L., and Kessels, W.M.M., ECS Transactions 16, 209 (2008).Google Scholar
9 Baggetto, L., Niessen, R.A.H., Roozeboom, F., Notten, P.H.L., Adv. Funct. Mater. 18, 1057 (2008).Google Scholar
10 Oudenhoven, J.F.M., Dongen, T. van, Niessen, R.A.H., de Croon, M.H.J.M. and, Notten, P.H.L., J. Electrochem. Soc. 156, D169 (2009).Google Scholar
11 Aaltonen, T., Ritala, M., Sajavaara, T., Keinonen, J., and Leskela, M., Chem. Mater. 15, 1924 (2003).Google Scholar
12 Baggetto, L., Oudenhoven, J.F.M., Dongen, T. van, Klootwijk, J.H., Mulder, M., Niessen, R.A.H., Croon, M.H.J.M de, Notten, P.H.L., J. Power Sources 189, 402 (2009).Google Scholar