Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T05:52:46.103Z Has data issue: false hasContentIssue false

Synthesis of Resorcinol Formaldehyde Aerogel Using Photo-Acid Generators for Inertial Confinement Fusion Experiments

Published online by Cambridge University Press:  28 January 2011

K.M. Saito
Affiliation:
General Atomics, PO Box 85608, San Diego, California 92186-5608, U.S.A.
R.R. Paguio
Affiliation:
General Atomics, PO Box 85608, San Diego, California 92186-5608, U.S.A.
J.F. Hund
Affiliation:
General Atomics, PO Box 85608, San Diego, California 92186-5608, U.S.A.
R. M. Jimenez
Affiliation:
General Atomics, PO Box 85608, San Diego, California 92186-5608, U.S.A.
Get access

Abstract

Traditionally, the synthesis of resorcinol formaldehyde (R/F) aerogels consists of a 2-step (base/acid catalysis) polycondensation reaction. Since the acid catalyst in the reaction controls the gelation time, the replacement of the acid catalyst with a non-ionic photo-acid generator decreased the gelation time from hours, down to a few minutes at room temperature using a UV light source. The reaction rate was not only fast, but the liquid precursor was stable for several hours prior to UV exposure. After drying, the resulting aerogel porosity was characterized by scanning electron microscopy (SEM) and confirmed the internal structure of the aerogel was similar to the original R/F pore structures. This paper will discuss the modifications made to the traditional R/F formulation, as well as the benefits of a fast gelation time for aerogel casting applications such as thin films, cylinders, and solid and hollow microspheres.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pekala, R.W., J. Mater. Sci. 24, 3221 (1989).10.1007/BF01139044Google Scholar
2. Sethian, J.D., et al. , Nucl. Fusion 43, 1693 (2003).10.1088/0029-5515/43/12/015Google Scholar
3. Perkins, J., et al. , HAPL Program Website: http://aries.ucsd.edu/HAPL/DOCS/HAPLtargetSpecs.doc Google Scholar
4. Lambert, S.M., Overturf, G.E. III, Wilemski, G., Letts, S., Schroen, D., and Cook, R.C., J. Appl. Polym. Sci. 65, 2111 (1997).10.1002/(SICI)1097-4628(19970912)65:11<2111::AID-APP7>3.0.CO;2-K3.0.CO;2-K>Google Scholar
5. Nikroo, A., Czechowicz, D., Paguio, R.R., Greenwood, A.L., and Takagi, M., Fusion Sci. Technol. 45, 84 (2004).10.13182/FST04-A432Google Scholar
6. Paguio, R.R., Takagi, M., Thi, M., Hund, J.F., Nikroo, A., Paguio, S., Luo, R., Greenwood, A.L., Acenas, O., Chowdhury, S., Fusion Sci. Technol. 51, 682 (2007).10.13182/FST51-682Google Scholar
7. Paguio, R.R., Jaison, D., Saito, K.M., Quan, K., Hund, J.F., and Nikroo, A., accepted for publication in Fusion Sci. Technol. (2010).Google Scholar
8. Pohl, H., Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields, Cambridge University Press, Cambridge (1978).Google Scholar
9. Jones, T., Electromechanics of Particles, Cambridge University press, New York (1995).10.1017/CBO9780511574498Google Scholar
10. Bei, Z.-M., Jones, T.B., Tucker-Schwartz, A., and Harding, D.R., et al. , Applied Physics Lett. 93, 184101 (2008).10.1063/1.3013577Google Scholar
11. Bei, Z.-M., Jones, T.B., and Tucker-Schwartz, A., J. of Electrostatics 67, 173, (2009).10.1016/j.elstat.2008.12.013Google Scholar
12. Frederick, C.A., Paguio, R.R., Nikroo, A., Hund, J.F., Acenas, O., and Thi, M., Fusion Sci. Technol. 49, 657 (2006)10.13182/FST06-A1182Google Scholar
13. Paguio, R.R., Saito, K.M., Hund, J.F., and Jimenez, R.M., this conference.Google Scholar