Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T02:46:35.221Z Has data issue: false hasContentIssue false

Ferroelectric Tunability Studies in Doped BaTiO3 and Ba1−xSrxTiO3

Published online by Cambridge University Press:  18 March 2011

Dong Li
Affiliation:
DuPont Central Research and Development, Experimental Station, Wilmington, DE 19880, USA
M. A. Subramanian
Affiliation:
DuPont Central Research and Development, Experimental Station, Wilmington, DE 19880, USA
Get access

Abstract

Acceptor and Donor codoped BaTiO3 and Ba1−xSrxTiO3 are prepared. For Ba1−xLaxTi1−xFexO3,BaTiO3 remains as tetragonal phase up to about 5mol% LaFeO3. For x ≥0.06, the structure changes to cubic at room temperature. The phase change shifts the Curie temperature to lower value and increases the tunability at room temperature. Doping of other acceptor (Al, Cr) and donor (Sm, Gd, Dy) ions has the same effect although with varying levels of tuning. BaTiO3: 4%LaFeO3 has the highest tunability among the studied systems, which is even higher than Ba0.6Sr0.4TiO3. Co-doping of (La, Fe) and (La, Al) in Ba1−xSrxTiO3 also lowers the Curie temperature and increases the tunability of high Ba content samples at cryogenic temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gevorgian, S., Carlsson, E., Wikborg, E., Kollberg, E., Integr. Ferroelectr., 22 245 (1998).Google Scholar
2. Vendik, O. G., Ter-Martirosyan, L. T., Dedyk, A. I., Karmanenko, S. F., Chakalov, R. A., Ferroelectrics, 144 33 (1993).Google Scholar
3. Hermann, A. and Badri, V., J. Supercond., 12 139 (1999).Google Scholar
4. Outzourhit, A. and Trefny, J. U., J. Mater. Res., 10 1411 (1995).Google Scholar
5. Hegenbarth, E., Phys. Status Solidi, 9 191(1965).Google Scholar
6. Herner, S. B., Selmi, F. A., Varadan, V. V., Varadan, V. K., Mater. Lett., 15 317 (1993).Google Scholar
7. Prasad, V. C. S., Kumar, L. G., Ferroelectrics, 102 141 (1990).Google Scholar
8. Morrison, F. D., Sinclair, D. C., Skakle, J. M. S., West, A. R., J. Am. Ceram. Soc., 81 1957 (1998).Google Scholar
9. Inoue, A., Iha, M., Matsuda, I., Uwe, H., Sakudo, T., Jpn. J. Appl. Phys., 30 [9B] 2388 (1991).Google Scholar
10. Ihrig, H., J. Phys. C: Solid State Phys., 11 819 (1978).Google Scholar
11. Skapin, S., Kolar, D., Suvorov, D., J. Solid State Chem., 129 223 (1997).Google Scholar
12. Schwarzbach, J., Cezch. J. Phys., B18 1322 (1968).Google Scholar
13. Ravez, J., Pouchard, M., Hagenmuller, P., Ferroelectrics, 197 161 (1997).Google Scholar
14. Shannon, R. D., Acta Crystallogr., A32 751 (1976).Google Scholar