Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T01:00:28.169Z Has data issue: false hasContentIssue false

Solvothermal Pathways to Transition Metal Oxides

Published online by Cambridge University Press:  15 February 2011

Alexej Michailovski
Affiliation:
Laboratory of Inorganic Chemistry, ETH Zürich ETH Hönggerberg, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
Greta R. Patzke
Affiliation:
Laboratory of Inorganic Chemistry, ETH Zürich ETH Hönggerberg, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
Get access

Abstract

A straightforward solvothermal pathway towards anisotropic nanoscale molybdenum, vanadium and tungsten oxides has been established. They are formed quantitatively from one-step procedures within a few days or hours of autoclave treatment in the temperature range between 100 and 220 °C. The addition of straightforward ionic additives (e.g. alkali halides) leads to a versatile interplay between the formation of novel polymolybdates(VI) and the production of oxidic nanoparticles. Key solvothermal features (role of the precursor, solvothermal parameter window, influence of ionic additives) of the individual transition metal oxides are investigated with respect to the development of general synthetic guidelines and predictive concepts.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Byrappa, K., Yoshimura, M., Handbook of Hydrothermal Technology (Noyes, Park Ridge, N. J., 2001).Google Scholar
2 Walton, R. I., Chem. Soc. Rev. 31, 230 (2002).Google Scholar
3 Komarneni, S., Katsuki, H., Pure Appl. Chem. 74, 1537 (2002).Google Scholar
4 Demazeau, G., Compt. Rend. Acad. Sci., Sér. II, 2, 685 (1999).Google Scholar
5 Demazeau, G., J. Mater. Chem. 9, 15 (1999).Google Scholar
6 Whittingham, M. S., Guo, J.-D., Chen, R., Chirayil, T., Janauer, G., Zavalij, P., Solid State Ionics 75, 257 (1995).Google Scholar
7 Cheetham, A. K., Mellot, C. F., Chem. Mater. 9, 2269 (1997).Google Scholar
8 Serre, C., Lorentz, C., Taulelle, F., Férey, G., Chem. Mater. 15, 2328 (2003).Google Scholar
9 Komarneni, S., Curr. Sci. 85, 1730 (2003).Google Scholar
10 Rao, C. N. R., Deepak, F. L., Gundiah, G., Govindaraj, A., Prog. Solid State Chem. 31, 5 (2003).Google Scholar
11 Patzke, G. R., Krumeich, F., Nesper, R., Angew. Chem. Int. Ed. 41, 2446 (2002).Google Scholar
12 Rao, C. N. R., Raveau, B., Transition Metal Oxides (VCH Publishers, New York, 1995).Google Scholar
13 Baiker, A., Gasser, D., Z. Phys. Chem. 41, 119 (1986).Google Scholar
14 Galatsis, K., Li, Y. X., Wlordarski, W., Comini, E., Sberveglieri, G., Catalini, C., Santucci, S., Passacantando, M., Sens. Actuators B83, 276 (2002).Google Scholar
15 Dobson, J. V., Coiner, J., J. Electroanal. Chem. 220, 225 (1987).Google Scholar
16 Michailovski, A., Grunwaldt, J.-D., Baiker, A., Kiebach, R., Bensch, W., Patzke, G. R., Angew. Chem., submitted.Google Scholar
17 Walton, R. I., Loiseau, T., O'Hare, D., Férey, G., Chem. Mater. 11, 3201 (1999).Google Scholar
18 Engelke, L., Schaefer, M., Porsch, F., Bensch, W., Eur. J. Inorg. Chem. 506 (2003).Google Scholar
19 Michailovski, A., Krumeich, F., Patzke, G. R., Helv. Chim. Acta 87, 1029 (2004).Google Scholar
20 Liu, H.-F., Liu, R.-S., Liew, K. Y., Johnson, R. E., Lunsford, J. H., J. Am. Chem. Soc. 106, 4117 (1984).Google Scholar
21 Zhou, J., Xu, N.-S., Deng, S.-Z., Chen, J., She, J.-C., Wang, Z.-L., Adv. Mater. 15, 1835 (2003).Google Scholar
22 Niederberger, M., Krumeich, F., Muhr, H.-J., Müller, M., Nesper, R., J. Mater. Chem. 11, 1941 (2001).Google Scholar
23 Lou, X. W., Zeng, H. C., Chem. Mater. 14, 4781 (2002).Google Scholar
24 Patzke, G. R., Michailovski, A., Krumeich, F., Nesper, R., Grunwaldt, J.-D., Baiker, A., Chem. Mater. 16, 1126 (2004).Google Scholar
25 Krebs, B., Acta Cryst. B28, 2222 (1972).Google Scholar
26 Günter, J. R., J. Solid State Chem. 5, 354 (1972).Google Scholar
27 Grunwaldt, J.-D., Ramin, M., Rohr, M., Michailovski, A., Patzke, G. R., Baiker, A., Rev. Sci. Instr., submitted.Google Scholar
28 Mann, S., Biomineralization, Oxford University Press (Oxford, New York, 2001).Google Scholar
29 Zhu, Y. Q., Hu, W., Hsu, W. K., Terrones, M., Grobert, N., Hare, J. P., Kroto, H. W., Walton, D. R. M., Terrones, H., Chem. Phys. Lett. 309, 327 (1999).Google Scholar
30 Patra, A., Auddy, K., Ganguli, D., Livage, J., Biswas, P. K., Mater. Lett. 58, 1059 (2004).Google Scholar
31 Wechter, M. A., Shanks, H. R., Carter, G., Ebert, G. M., Guglielmo, R., Voigt, A. F., Anal. Chem. 44, 850 (1972).Google Scholar
32 Koltypin, Yu., Nikitenko, S. I., Gedanken, A., J. Mater. Chem. 12, 1107 (2002).Google Scholar
33 Niederberger, M., Bartl, M. H., Stucky, G. D., J. Am. Chem. Soc. 124, 13642 (2002).Google Scholar
34 Li, X.-L., Liu, J.-F., Li, Y.-D., Inorg. Chem. 42, 921 (2003).Google Scholar
35 Frey, L. G., Rothschild, A., Sloan, J., Rosentsveig, R., Popovitz-Biro, R., Tenne, R., J. Solid State Chem. 162, 300 (2001).Google Scholar
36 Reis, K. P., Ramanan, A., Whittingham, M. S., J. Solid State Chem. 91, 394 (1991).Google Scholar
37 Reis, K. P., Ramanan, A., Whittingham, M. S., J. Solid State Chem. 96, 31 (1992).Google Scholar
38 Dickens, P. G., Halliwell, A. C., Murphy, D. J., Whittingham, M. S., Trans. Faraday Soc. 67, 794 (1971).Google Scholar
39 Michailovski, A., Krumeich, F., Patzke, G. R., Mater. Res. Bull. 39, 887 (2004).Google Scholar
40 Michailovski, A., Krumeich, F., Patzke, G. R., Chem. Mater. 16, 1433 (2004).Google Scholar
41 Oi, J., Kishimoto, A., Kudo, T., J. Solid State Chem. 103, 176 (1993).Google Scholar
42 Janauer, G. G., Dobley, A., Guo, J., Zavalij, P., Whittingham, M. S., Chem. Mater. 8, 2096 (1996).Google Scholar
43 Krumeich, F., Muhr, H.-J., Niederberger, M., Bieri, F., Schnyder, B., Nesper, R., J. Am. Chem. Soc. 121, 8324 (1999).Google Scholar
44 Coucou, A., Driouiche, A., Figlarz, M., Touboul, M., Chévrier, G., J. Solid State Chem. 32, 283 (1992).Google Scholar
45 Zavalij, P. Y., Whittingham, M. S., Acta Cryst. B55, 627 (1999).Google Scholar
46 Knobl, S., Zenkovets, G. A., Kryukova, G. N., Ovsitser, O., Niemeyer, D., Schlögl, R., Mestl, G., J. Catal. 215, 177 (2003).Google Scholar
47 Xu, H.-Y., Wang, H., Song, Z. Q., Wang, Y. W., Yan, H., Yoshimura, M., Electrochim. Acta 49, 349 (2004).Google Scholar
48 Morcrette, M., Rozier, P., Dupont, L., Muynier, E., Sannier, L., Galy, J., Tarascon, J.-M., Nature Mater. 2, 766 (2003).Google Scholar
49 Stenou, N., Bouhedja, L., Castro-Garcia, S., Livage, J., High Pressure Res. 20, 55 (2001).Google Scholar
50 Sedini, F., Etteyeb, N., Stenonou, N., Guyard-Duhayon, C., Maquet, J., Gharbi, N., Livage, J., J. Solid State Chem. 167, 407 (2002).Google Scholar
51 Ayyappan, S., Subbanna, N., Rao, C. N. R., Chem. Eur. J. 1, 165 (1995).Google Scholar