Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T04:14:56.310Z Has data issue: false hasContentIssue false

The effect of mealybug Pseudococcus longispinus (Targioni Tozzetti) infestation of different density on physiological responses of Phalaenopsis × hybridum ‘Innocence’

Published online by Cambridge University Press:  01 April 2015

I. Kot*
Affiliation:
Department of Entomology, University of Life Sciences in Lublin, ul. Leszczyńskiego 7, 20-069 Lublin, Poland
K. Kmieć
Affiliation:
Department of Entomology, University of Life Sciences in Lublin, ul. Leszczyńskiego 7, 20-069 Lublin, Poland
E. Górska-Drabik
Affiliation:
Department of Entomology, University of Life Sciences in Lublin, ul. Leszczyńskiego 7, 20-069 Lublin, Poland
K. Golan
Affiliation:
Department of Entomology, University of Life Sciences in Lublin, ul. Leszczyńskiego 7, 20-069 Lublin, Poland
K. Rubinowska
Affiliation:
Department of Plant Physiology, University of Life Sciences in Lublin, ul. Akademicka 15, 20-950 Lublin, Poland
B. Łagowska
Affiliation:
Department of Entomology, University of Life Sciences in Lublin, ul. Leszczyńskiego 7, 20-069 Lublin, Poland
*
*Author for correspondence Phone: +48815248102 Fax: +48815248103 E-mail: izabela.kot@up.lublin.pl

Abstract

Cultivated orchids are the most abundantly attacked by polyphagous mealybugs. This study documented how different density of mealybug Pseudococcus longispinus (Targioni Tozzetti) infestation is associated with a response of antioxidative systems of Phalaenopsis × hybridum ‘Innocence’. The degree of cell damage, estimated by electrolyte leakage measurement and the level of thiobarbituric acid reactive substances (TBARS), the content of pigments as well as the activity of antioxidative enzymes and proline level, as measurements of stress and stress compensation in moth orchid were examined. The highest electrolyte leakage (EL) value among samples from colonized plants was found in the orchids from series III (50 individuals/plant), whereas the lowest in the plants from series II (20 individuals/plant). The TBARS content reached the highest level at the lowest number of feeding insects (series I). Peroxidase activity toward guaiacol was significantly increased in series I (5 individuals/plant). The highest catalase activity was recorded in plants colonized by the highest number of scale insects (series III). Whereas, the highest value of proline was in series II. The content of individual photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids) in plant tissues did not vary significantly between control and colonized orchids. The results have not confirmed hypothesis that the increasing number of mealybugs occurring on plant enhanced plant physiological response. The degree of longtailed mealybug infestation on plants was positively correlated only with electrolyte leakage and catalase activity in leaf tissues.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, M.B., Hahn, E-J. & Paek, K-Y. (2005) Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiology and Biochemistry 43, 213223.Google Scholar
Apel, K. & Hirt, H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373399.Google Scholar
Bates, L.S., Waldren, R.R. & Teare, I.D. (1973) Rapid determination of free proline or water-stress studies. Plant Soil 39, 205207.CrossRefGoogle Scholar
Calatayud, P.A. & Le Rü, B. (2006) Cassava–Mealybug Interactions. Paris, IRD Éditions, p. 110.Google Scholar
Calatayud, P.A., Rahbe, Y., Tjallingii, W.F., Tertuliano, M. & Le Rü, B. (1994) Electrically recorded feeding behaviour of cassava mealybug on host and non-host plants. Entomologia Experimentalis et Applicata 72, 219232.Google Scholar
Chance, B. & Meahly, S.K. (1955) Assays of catalase and peroxidase. Methods in Enzymology 2, 764775.CrossRefGoogle Scholar
Ferry, N., Stavroulakis, S., Guan, W., Davison, G.M., Bell, H.A., Weaver, R.J., Down, R.E., Gatehouse, J.A. & Gatehouse, A.M.R. (2011) Molecular interactions between wheat and cereal aphid (Sitobion avenae): analysis of changes to the wheat proteome. Proteomics 11, 19852002.Google Scholar
Gaspar, T., Penel, C., Hagege, D. & Greppin, H. (1991) Peroxidases in plant growth, differentiation, and developmental processes. in Łobarzewski, J., Greppin, H., Penel, C. & Gaspar, T. (Eds) Biochemical, Molecular and Physiological Aspects of Plant Peroxidases. Lublin, University M Curie Sklodowska. 249280.Google Scholar
Gatehouse, J.A. (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytologist 156, 145169. doi: 10.1046/j.1469-8137.2002.00519.x.Google Scholar
Gill, S.S. & Tuteja, N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48, 909930.CrossRefGoogle ScholarPubMed
Golan, K. (2013) Interactions between host plants and Coccus hesperidum L. (Hemiptera; Sternorrhyncha; Coccidae). Dissertation 381, University of Life Sciences in Lublin, Lublin.Google Scholar
Golan, K., Rubinowska, K. & Górska-Drabik, E. (2013) Physiological and biochemical responses on fern Nephrolepis biserrata (Sw.)Schott. to Coccus hesperidum L. infestation. Acta Biologica Cracoviensia Series Botanica 55, 16.Google Scholar
Goławska, S., Krzyżanowski, R. & Łukasik, I. (2010) Relationship between aphid infestation and chlorlophyll content in Fabaceae species. Acta Biologica Cracoviensia series Botanica 52(2), 7680.Google Scholar
Gomathi, R. & Rakkiyapan, P. (2011) Comparative lipid peroxidation, leaf membrane thermostability, and antioxidant system in four sugarcane genotypes differing in salt tolerance. International Journal of Plant Physiology and Biochemistry 3(4), 6774.Google Scholar
Gomez, S.K., Oosterhuis, D.M., Rajguru, S.N. & Johnson, D.R. (2004) Foliar antioxidant enzyme responses in cotton after aphid herbivory. The Journal of Cotton Science 8, 99104.Google Scholar
Gulsen, O., Eickhoff, T., Heng-Moss, T., Shearman, R., Baxendale, F., Sarath, G. & Lee, D. (2010) Characterization of peroxidase changes in resistant and susceptible warm-season turfgrass challenged by Blissus occiduus . Arthropod–Plant Interactions 4, 4555.CrossRefGoogle Scholar
He, J., Chen, F., Chen, S., Lv, G., Deng, Y., Fang, W., Liu, Z., Guan, Z. & He, C. (2011) Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. Journal of Plant Physiology 168, 687693.CrossRefGoogle ScholarPubMed
Heath, R.L. & Packer, L. (1968) Effect of light on lipid peroxidation in chloroplasts. Biochemical and Biophysical Research Communications 19, 716720.Google Scholar
Hoque, M.A.O.E., Banu, M.N.A., Nakamura, Y., Shimoishi, Y. & Murata, Y. (2007) Exogenous proline mitigates the detrimental effects of salt stress more than the betaine by increasing antioxidant enzyme activity. Journal of Plant Physiology 164, 553561.Google Scholar
Huang, J., Zhang, P.J., Zhang, J., Lu, Y.B., Huang, F. & Li, M.J. (2013) Chlorophyll content and chlorophyll fluorescence in tomato leaves infested with an invasive mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae). Plant–Insect Interactions 42, 973979.Google Scholar
Hung, S.H., Yu, C.W. & Lin, C.H. (2005) Hydrogen peroxide functions as a stress signal in plants. Botanical Bulletin of the Academia Sinica 46, 110.Google Scholar
Johnson, P.J. (2009) Mealybugs on orchids. American Orchid Society, Available online at https://www.aos.org/Default.aspx?id=511 Google Scholar
Kaur, R., Gupta, A.K. & Taggar, G.K. (2014) Role of catalase, H2O2 and phenolics in resistance of pigeonpea towards Helicoverpa armigera (Hubner). Acta Physiologiae Plantarum 36, 15131527.CrossRefGoogle Scholar
Kehr, J. (2006) Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. Focus paper. Journal of Experimental Botany 57(4), 767774.Google Scholar
Khattab, H. (2007) The defence mechanism of cabbage plant against phloem-sucking aphid (Brevicoryne brassicae L.). Australian Journal of Basic and Applied Sciences 1, 5662.Google Scholar
Kmieć, K., Kot, I., Rubinowska, K., Łagowska, B., Golan, K. & Górska-Drabik, E. (2014) Physiological reaction of Phalaenopsis x hybridum ‘Innocence’ on Pseudococcus longispinus (Targoni Tozetti) feeding. Acta Scientarum Polonorum, Hortorum Cultus 13(3), 8596.Google Scholar
Kocsy, Y., Laurie, R., Szalai, G., Szilágyi, V., Simon-Sarkadi, L., Galiba, G. & de Ronde, J.A. (2005) Genetic manipulation of proline levels affects antioxidant in soybean subjected to simultaneous drought and heat stresses. Physiologia Plantarum 124, 227235.CrossRefGoogle Scholar
Kościelniak, J. (1993) Wpływ następczy temperatur w termoperiodyzmie dobowym na produktywność fotosyntetyczną kukurydzy (Zea mays L.)/Successive effect of temperature daily thermoperiodism in the photosynthetic productivity of maize (Zea mays L.). PhD Thesis 174, University of Agriculture, Kraków.Google Scholar
Lichtenthaler, H.K. & Wellburn, A.R. (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 11, 591592.CrossRefGoogle Scholar
Łukasik, I., Goławska, S., Wójcicka, A. & Pogonowska, M. (2008) Activity of cereal aphid enzymes towards scavenging hydrogen peroxide. Aphids and Other Hemipterous Insects 14, 165173.Google Scholar
Łukasik, I., Goławska, S. & Wójcicka, A. (2012) Effect of cereal aphid infestation on ascorbate content and ascorbate peroxidase activity in triticale. Polish Journal of Environmental Studies 21(6), 19371941.Google Scholar
Maffei, M.E., Mithofer, A. & Boland, W. (2007) Insect feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68, 29462959.CrossRefGoogle ScholarPubMed
Mai, V.C., Bednarski, W., Borowiak-Sobkowiak, B., Wilkaniec, B., Samardakiewicz, S. & Morkunas, I. (2013) Oxidative stress in pea seedling leaves in response to Acyrthosiphon pisum infestation. Phytochemistry 93, 4962.Google Scholar
Małolepsza, A., Urbanek, H. & Polit, J. (1994) Some biochemical of strawberry plants to infection with Botrytis cinerea and salicylic acid treatment. Acta Agrobotanica 47, 7381.Google Scholar
Mika, A., Boenisch, M.J., Hopff, D. & Lüthje, S. (2010) Membrane-bound guaiacol peroxidases from maize (Zea mays L.) roots are regulated by methyl jasmonate, salicylic acid, and pathogen elicitors. Journal of Experimental Botany 61(3), 831841.CrossRefGoogle ScholarPubMed
Miles, P.W. (1999) Aphid saliva. Biological Reviews of the Cambridge Philosophical Society 74, 4185.Google Scholar
Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7, 405410.CrossRefGoogle ScholarPubMed
Mohase, L. & van der Westhuizen, A.J. (2002) Salicylic acid is involved in resistant response in the Russia wheat aphid–wheat interaction. Journal of Plant Physiology 159, 585590.Google Scholar
Molinari, H.B.C., Marur, C.J., Daros, E., de Campos, M.K.F. & de Carvalho, J.F.R.P. (2007) Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiologia Plantarum 130, 218229.CrossRefGoogle Scholar
Moloi, M.J. & van der Westhuizen, A.J. (2006) The reactive oxygen species are involved in resistance response of wheat to the Russian wheat aphid. Journal of Plant Physiology 163, 11181125.Google Scholar
Ni, X., Quisenberry, S.S., Heng-Moss, T., Markwell, J., Higley, L., Baxendale, F., Sarath, G. & Klucas, R. (2002) Dynamic change in photosynthetic pigments and chlorophyll degradation elicited by cereal aphid feeding. Entomologia Experimentalis et Applicata 105, 4353.Google Scholar
Ozawa, R., Bertea, C.M., Foti, M., Narayana, R., Arimura, G.I., Muroi, A., Horiuchi, J.I., Nishioka, J.I., Maffei, M.E. & Takabayashi, J. (2009) Exogenous polyamines elicit herbivore-induced volatiles in Lima bean leaves: involvement of calcium, H2O2 and jasmonic acid. Plant and Cell Physiology 50, 21832199.CrossRefGoogle ScholarPubMed
Ozden, M., Demirel, U. & Kahraman, A. (2009) Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2 . Scientia Horticulturae – Amsterdam 119, 163168.Google Scholar
Porta, H. & Rocha-Sosa, M. (2002) Plant lipoxygenases. Physiological and molecular features. Plant Physiology 130, 1521.Google Scholar
Rejeb, K.B., Abdelly, C. & Savouré, A. (2014) How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry 80, 278284.Google Scholar
Retuerto, R., Lema, B.F., Roiloa, S.R. & Obeso, J.R. (2004) Increased photosynthetic performance in holly trees infested by scale insects. Functional Ecology 18, 664669.Google Scholar
Samsone, I., Andersone, U. & Ievinsh, G. (2012) Variable effect of arthropod-induced galls on photochemistry of photosynthesis, oxidative enzyme activity and ethylene production in tree leaf tissues. Environmental and Experimental Biology 10, 1526.Google Scholar
Sempruch, C., Golan, K., Górska-Drabik, E., Kmieć, K., Kot, I. & Łagowska, B. (2014) The effect of a mealybug infestation on the activity of amino acid decarboxylases in orchid leaves. Journal of Plant Interactions 9(1), 825831.Google Scholar
Suzuki, N. & Mittler, R. (2012) Reactive oxygen species-dependent wound responses in animals and plants. Free Radical Biology and Medicine 53, 22692276.Google Scholar
Sytykiewicz, H., Goławska, S. & Chrzanowski, G. (2011) Effect of the bird cherry-oat aphid Rhopalosiphum padi L. feeding on phytochemical responses within the bird cherry Prunus padus L. Polish Journal of Ecology 59(2), 329338.Google Scholar
Szabados, L. & Savouré, A. (2009) Proline: a multifunctional amino acid. Review. Trends in Plant Science 15(2), 8997.Google Scholar
Taggar, G.H., Gill, R.S., Gupta, A.K. & Sandhu, J.S. (2012) Fluctuations in peroxidase and catalase activities of resistant and susceptible blackgram (Vigna mungo (L.) Hepper) genotypes elicited by Bemisia tabaci (Gennadius) feeding. Plant Signaling & Behavior 7, 13211329.Google Scholar
Vranjic, J.A. (1997) Effects on host plant. Chapter ecology. in Ben-Dov, Y. & Hodgson, C.J. (Eds) Soft Scale Insects – Their Biology, Natural Enemies and Control. Elsevier Science B.V. 323336.Google Scholar
Walling, L. (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiology 146, 859866.Google Scholar
War, A.R., Pauljar, M.G., War, M.Y. & Ignacimuthu, S. (2012) Herbivore induced resistance in different groundnut germplasm lines to Asian armyworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Acta Physiologiae Plantarum 34, 343352.Google Scholar
Wei, H., Zhikuan, J. & Qingfang, H. (2007) Effects of herbivore stress by Aphis medicaginis Koch on the malondialdehyde contents and the activities of protective enzymes in different alfalfa varieties. Acta Ecologica Sinica 27(6), 21772183.Google Scholar
Will, T. & van Bel, A.J.E. (2008) Induction as well as suppression. Plant Signaling & Behavior 3(6), 427430.Google Scholar
Will, T., Tjallingii, W.F., Thönnessen, A. & van Bel, A.J.E. (2007) Molecular sabotage of plant defense by aphid saliva. Proceeding of the National Academy of Science of the United States of America 104(25), 1053610541.Google Scholar
Will, T., Steckbauer, K., Hardt, M. & van Bel, A.J.E. (2012) Aphid Gel Saliva: sheath structure, protein composition and secretory dependence on Stylet-Tip Milieu. Public Library of Science 7(10), e46903.Google Scholar
Wiloch, U., Mioduszewska, H. & Banaś, A. (1999) The influence of alloxydim on the antioxidant enzymatic activity in the roots maize (Zea mays L.). Acta Physiologiae Plantarum 21, 535541.Google Scholar