Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T13:04:22.288Z Has data issue: false hasContentIssue false

Thermoelectric Properties of Selenide Spinels

Published online by Cambridge University Press:  01 February 2011

G. Jeffrey Snyder
Affiliation:
Jet Propulsion Laboratory/California Institute of Technology, 4800, Oak Grove Drive, MS 277–207, Pasadena, CA 91109
T. Caillat
Affiliation:
Jet Propulsion Laboratory/California Institute of Technology, 4800, Oak Grove Drive, MS 277–207, Pasadena, CA 91109
J. -P. Fleurial
Affiliation:
Jet Propulsion Laboratory/California Institute of Technology, 4800, Oak Grove Drive, MS 277–207, Pasadena, CA 91109
Get access

Abstract

Many compounds with the spinel structure type have been analyzed for their thermoelectric properties. Published data was used to augment experimental results presented here and to select promising thermoelectric spinels. Compounds studied here include Cu0.5Al0.5Cr2Se4, Cu0.5Co0.5Cr2Se4, Cu0.5In0.5Cr2Se4, and CuIr2Se4. Many exhibit low lattice thermal conductivity of about 20 mW/cmK, independent of temperature. Preliminary results are given for two series of compounds that were selected for further study: GaxCu1-xCr2Se4 and ZnxCu1-xCr2Se4.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Landolt-Börnstein Springer-Verlag, Berlin, Vol. NS III/17h;NS III/12b;NS III/4b.Google Scholar
[2] Spitzer, D. P., J. Phys. Chem. Solids 31, 19 (1970).Google Scholar
[3] Snyder, G. J., Caillat, T., and Fleurial, J.-P., Mat. Res. Soc. Symp. Proc. 545, 333 (1999).Google Scholar
[4] Lotgering, F. K., vanStapele, R. P., vanderSteen, G. H. A. M., et al., J. Phys. Chem. Solids 30, 799 (1969).Google Scholar
[5] Furubayashi, T., Kosaka, T., Tang, J., et al., J. Phys. Soc. Jpn. 66, 1563 (1997).Google Scholar
[6] Lehmann, H. W., Phys. Rev. 163, 488 (1967).Google Scholar
[7] Amith, A. and Gunsalus, G. L., J. Appl. Phys. 40, 1020 (1969).Google Scholar
[8] Chaves, M. R., Ribeiro, J. L., Selmi, A., et al., Phys. Stat. Sol. 92, 263 (1985).Google Scholar
[9] Minematsu, K., Miyatani, K., and Takahashi, T., J. Phys. Soc. Jpn. 31, 123 (1971).Google Scholar
[10] Duda, H., Gron, T., and Warczewski, J., J. Magn. Magn. Mater. 88, 55 (1990).Google Scholar
[11] Gron, T., Baerner, K., Kleeberg, C., et al., Physica B 225, 191 (1996).Google Scholar
[12] Lutz, H. D., Koch, U., and Okonska-Kozlowska, I., J. Solid State Chem. 51, 69 (1984).Google Scholar
[13] Krok-Kowalski, J., Rej, H., Gron, T., et al., J. Magn. Magn. Mater. 137, 329 (1994).Google Scholar
[14] Bouchard, R. J., Russo, P. A., and Wold, A., Inorg. Chem. 4, 685 (1965).Google Scholar
[15] Abdurragimov, A. A., Namazov, Z. M., Valiev, L. M., et al., Inorg. Mater. 17, 1113 (1981).Google Scholar
[16] van der Pauw, L. J., Philips Res. Repts. 13, 1 (1958).Google Scholar
[17] Wood, C., Zoltan, L. D., and Stapfer, G., Rev. Sci Instrum. 56, 719 (1985).Google Scholar
[18] Rowe, D. M., Thermoelectric Handbook (CRC, Boca Raton, 1995).Google Scholar
[19] Vandersande, J. W., Wood, C., Zoltan, A., et al., in Thermal Conductivity (Plenum, New York, 1988), p. 445.Google Scholar
[20] Snyder, G. J., PRB submitted (2000).Google Scholar
[21] Bhandari, C. M. and Rowe, D. M., Thermal Conduction in Semiconductors (Wiley Eastern Limited, New Delhi, 1988).Google Scholar
[22] Singh, D., Private Communication.Google Scholar