Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T09:54:33.623Z Has data issue: false hasContentIssue false

Formation, Crystal Structure and Physical Properties of Novel Thermoelectric Skutterudites: EuyFe4−xNixSb12

Published online by Cambridge University Press:  21 March 2011

Andriy Grytsiv
Affiliation:
Institut für Physikalische Chemie, Universität Wien, Währingerstr. 42, A-1090 Wien, Austria
Peter Rogl
Affiliation:
Institut für Physikalische Chemie, Universität Wien, Währingerstr. 42, A-1090 Wien, Austria
Stefan Berger
Affiliation:
Institut für Experimentalphysik, T.U. Wien, Wiedner Hauptstr. 8-10 A-1040 Wien, Austria
Christoph Paul
Affiliation:
Institut für Experimentalphysik, T.U. Wien, Wiedner Hauptstr. 8-10 A-1040 Wien, Austria
Ernst Bauer
Affiliation:
Institut für Experimentalphysik, T.U. Wien, Wiedner Hauptstr. 8-10 A-1040 Wien, Austria
Claude Godart
Affiliation:
CNRS-UPR209, 2-8 rue Henri Dunant, F94320 Thiais, and LURE, CNRS, 91405 Orsay, France
Adriana Saccone
Affiliation:
Dip. Chimica e Chimica Industriale, Univ. Genova, Via Dodecaneso 31, I-16146 Genova, Italy
Ricardo Ferro
Affiliation:
Dip. Chimica e Chimica Industriale, Univ. Genova, Via Dodecaneso 31, I-16146 Genova, Italy
Darek Kaczorowski
Affiliation:
W. Trzebiatowski Institute for Low Temperature and Structure Research Polish Academy of Sciences, P-50-950 Wroclaw, P. O. Box 1410, Poland
Get access

Abstract

Quantitative X-ray powder Rietveld refinements for a series of alloys from the solid solution EuyFe4−xNixSb12, synthesized by argon arc-melting followed by long term annealing, established in all cases isotypism with the partially filled skutterudite-type structure, LaFe4P12. The Eucontent of the samples was determined from the combined data obtained results of Rietveld refinements and electron microprobe measurements. These investigations confirmed a systematic trend for the Eu-occupancy y in the parent lattice, revealing a gradual decrease of the maximum Eu-content from practically full occupancy, y = 0.83, in Eu0.83Fe4Sb12 to y ∼ 0.5 for Eu∼0.5Fe2Ni2Sb12. Eu0.83Fe4Sb12 orders magnetically below 84 K and the transition temperature decreases as a function of Fe/Ni substitution. As a further consequence of the Fe/Ni substitution electronic transport crosses over from a hole conductivity regime into electron dominated behaviour. Concomitantly, the transition metal exchange increases the Seebeck coefficient significantly, hence the figure of merit enhances.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Leithe-Jasper, A., Kaczorowski, D., Rogl, P., Bogner, J., Steiner, W., Wiesinger, G., and Godart, C., Solid State Communications 109, 395 (1999).Google Scholar
2. Bauer, E., Galatanu, A., Michor, H., Hilscher, G., Rogl, P., Boulet, P., and Noel, H., Eur. Phys. J. B 14, 483 (2000).Google Scholar
3. Bauer, E., Berger, St., Galatanu, A., Michor, H., Paul, Ch., Hilscher, G., Tran, V.H., Grytsiv, A., and Rogl, P., J. Magn. Magn. Mat. 226–230, 674 (2001).Google Scholar
4. Bauer, E., Berger, St., Galatanu, A., Galli, M., Michor, H., Hilscher, G., Ch. Paul, Ni, B., Abd-Elmeguid, M.M., Tran, V.H., Grytsiv, A., and Rogl, P., Phys. Rev. B 63, 224414 (2001).Google Scholar
5. Grytsiv, A., Rogl, P., Berger, St., Paul, Ch., Bauer, E., Godart, C., Ni, B., Abd-Elmeguid, M.M., Saccone, A., Ferro, R., and Kaczorowski, D., submitted to Phys. Rev. BGoogle Scholar
6. Jeitschko, W. and Braun, D.J., Acta Crystallogr. B 33, 3401 (1977).Google Scholar
7. Danebrock, M.E., Evers, Ch.H.B. and Jeitschko, W., J. Phys. Chem. Sol. 57, 387 (1996).Google Scholar
8. Bauer, E., Berger, St., Galatanu, A., Paul, Ch., Mea, M. Della, Michor, H., Hilscher, G., Grytsiv, A., Rogl, P., Kaczorowski, D., Keller, L., Herrmannsdörfer, T. and Fischer, P., Physica B (2001), in press.Google Scholar
9. Yang, J., Meisner, G. P., Morelli, D.T., and Uher, C., Phys. Rev. B 63, 0144101 (2001).Google Scholar
10. Huhnt, C., Michels, G., Schlabitz, W., Johrendt, D., and Mewis, A., J. Phys. Cond. Mat. 9, 9953 (1997).Google Scholar