Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-12T22:02:15.130Z Has data issue: false hasContentIssue false

The Evolution of Nanothermoelectricity

Published online by Cambridge University Press:  11 August 2011

Mildred Dresselhaus*
Affiliation:
Department of Physics and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A personal review is presented. We review the renaissance in thermoelectric materials research that started in 1993 with the introduction of the nanostructure concept as a potential method to both increase the power factor and decrease the thermal conductivity and to even do both at the same time. The earliest work was limited to model systems for the demonstration of proof of principle. More recently the focus has evolved into demonstration of embedding the phenomena into bulk samples based on composites and superlattices. We here review this evolution of the nanothermoelectricity field. The resulting current activity is attracting many new researchers, industrial interest and the emergence of new ideas. We now look to the further development of these new ideas, and to the introduction of more new ideas and new approaches, as the field is now approaching the stage of commercial relevance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

References

REFERENCES

1. Yoffe, A., Adv. in Phys. 42, 173 (1993).Google Scholar
2. Goldsmid, H.J., Thermoelectric Refrigeration, Plenum, New York, 1964.Google Scholar
3. Saito, R., Fujita, M., Dresselhaus, G., Dresselhaus, M.S., Electronic structures, Materials Science and Engineering B 19, 185–191 (1993).Google Scholar
4. Hicks, L.D., Dresselhaus, M.S., Phys. Rev. B 47, 12727 (1993).Google Scholar
5. Hicks, L.D., Dresselhaus, M.S., Phys. Rev. B 47, 16631(1993).Google Scholar
6. Hicks, L.D., Harman, T.C., Dresselhaus, M.S., Appl. Phys. Lett. 63, 3230 (1993).Google Scholar
7. Hicks, L.D., Harman, T.C., Sun, X., Dresselhaus, M.S., Phys. Rev. B 53, R10493 (1996).Google Scholar
8. Zhang, Z.B., Fabrication, characterization and transport properties of bismuth nanowire systems, {Ph.D.} thesis, Massachusetts Institute of Technology, Department of Physics (February 1999).Google Scholar
9. Sun, X., Zhang, Z., Dresselhaus, M.S., Appl. Phys. Lett. 74, 4005 (1999).Google Scholar
10. Sun, X., Zhang, Z., Dresselhaus, G., Dresselhaus, M.S., Ying, J.Y., Chen, G., Theoretical modeling of thermoelectricity in bismuth nanowires, in: Tritt, T.M., Lyon, H.B. Jr., Mahan, G., Kanatzidis, M.G. (Eds.), Thermoelectric Materials. The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications: MRS Symposium Proceedings, Boston, volume, Vol. 545, Materials Research Society Press, Pittsburgh, PA, 1999, pp. 87–92.Google Scholar
11. Koga, T., Harman, T.C., Cronin, S.B., Dresselhaus, M.S., Phys. Rev. B 60, 14286 (1999).Google Scholar
12. Koga, T., Sun, X., Cronin, S.B., Dresselhaus, M.S., Appl. Phys. Lett. 73, 2950 (1998).Google Scholar
13. Dresselhaus, M.S., Dresselhaus, G., Sun, X., Zhang, Z., Cronin, S.B., Koga, T., Phys. Solid State 41, 679 (1999).Google Scholar
14. Dresselhaus, M.S., Dresselhaus, G., Sun, X., Zhang, Z., Cronin, S.B., Koga, T., Ying, J.Y., Chen, G., Microscale Thermophysical Engineering 3, 89 (1999).Google Scholar
15. Snyder, G. S. and Toberer, E. S., NATURE Materials 7, 105 (2008).Google Scholar
16. Lin, Y.-M., Sun, X., Dresselhaus, M.S., Phys. Rev. B 62, 4610 (2000).Google Scholar
17. Heremans, J.P., Thrush, C.M., Lin, Y.M., Cronin, S., Zhang, Z., Dresselhaus, M.S., Mansfield, J.F., Phys. Rev. B 61, 2921 (2000).Google Scholar
18. Lin, Y.M., Rabin, O., Cronin, S.B., Ying, J.Y., Dresselhaus, M.S., Appl. Phys. Lett. 81, 2403 (2002).Google Scholar
19. Borca-Tasciuc, T., Liu, W., Liu, J., Zeng, T., Song, D.W., Moore, C.D., Chen, G., Wang, K.L., Goorsky, M.S., Radetic, T., Gronsky, R., Koga, T., Dresselhaus, M.S., Superlattices and Microstructures 28, 199 (2000).Google Scholar
20. Chen, G., Dresselhaus, M.S., Dresselhaus, G., Fleurial, J.-P., Caillat, T., Recent developments in thermoelectric materials, in: Bevis, M.J. (Ed.), International Materials Review, Vol. 48, Vol.∼48, Institute of Materials Journals, 1 Carlton House Terrace, London SW1Y 5DB, 2003, pp. 45–66.Google Scholar
21. Rogacheva, E.I., Krivulkin, I.M., Nashchekina, O.N., Sipatov, A.Y., Volobuev, V.A., Dresselhaus, M.S., Appl. Phys. Lett. 78, 3238 (2001).Google Scholar
22. Rogacheva, E.I., Krivulkin, I.M., Nashchekina, O.N., Sipatov, A.Y., Volubnev, V.V., Dresselhaus, M.S., Appl. Phys. Lett. 78, 1661 (2001).Google Scholar
23. Rogacheva, E.I., Tavrina, T.V., Nashchekina, O.N., Grigorov, S.N., Nasedkin, K.A., Dresselhaus, M.S., Appl. Phys. Lett. 80, 2690 (2002).Google Scholar
24. Yang, R., Chen, G., Dresselhaus, M.S., Phys. Rev. B 72, 125418–1 (2005).Google Scholar
25. Yang, R., Chen, G., Dresselhaus, M.S., Nano Letters 5, 1111 (2005).Google Scholar
26. Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J.P., Gogna, P., New directions for nanoscale thermoelectric materials research, in: Yang, J., Hogan, T.P., Funahashi, R., Nolas, G.S. (Eds.), Materials and Technologies for Direct Thermal-to-Electric Energy Conversion: MRS Symposium Proceedings, Boston, December 2005, Vol. 886, Materials Research Society Press, Pittsburgh, PA, 2005, p 3.Google Scholar
27. Tritt, T.M., Subramanian, M.A., MRS Bulletin 31, 188 (2006).Google Scholar
28. Joshi, G., Lee, H., Lan, Y., Wang, X., Xhu, G., Wang, D., Gould, R.W., Cuff, D.C., Tang, M.Y., Dresselhaus, M.S., Chen, G., Ren, Z.F., Nano Letters 8, 4670 (2008).Google Scholar
29. Wang, X., Lee, H., Lan, Y., Zhu, G., Joshi, G., Wang, D., Yang, J., Muto, A.J., Tang, M.Y., Klatsky, J., Song, S., Dresselhaus, M.S., Chen, G., Ren, Z., Applied Physics Letter 93, 193121 (2008).Google Scholar
30. Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., Ren, Z.F., Science 320, 634 (2008).Google Scholar
31. Minnich, A., Lee, H., Wang, X.W., Joshi, G., Dresselhaus, M.S., Ren, Z.F., Chen, G., Vashaee, D., Physical Review B 80, 155327 (2009).Google Scholar
32. Yang, J., Hao, Q., Wang, H., Lan, Y.C., He, Q.Y., Minnich, A., Wang, D.Z., Harriman, J.A., Varki, V.M., Dresselhaus, M.S., Chen, G., Ren, Z.F., Phys. Rev. B 80, 115329 (2009).Google Scholar
33. Bux, S.K., Blair, R.G., Gogna, P.K., Lee, H., Chen, G., Dresselhaus, M.S., Kaner, R.B., Fleurial, J.P., Advanced Functional Materials 19, 2445 (2009).Google Scholar
34. Zhu, G.H., Lee, H., Lan, Y.C., Wang, X., Joshi, D.W.G., Blair, R., Tang, M., Vashaee, D., Gogna, P., Ren, Z., Fleurial, J., Chen, G., Dresselhaus, M.S., Physical Review Letters 102 196803 (2009).Google Scholar
35. Baxter, J., Bian, Z., Chen, G., Danielson, D., Dresselhaus, M.S., Fedorov, A.G., Fisher, T.S, Jones, C.W., Maginn, E., Kortshagen, U., Manthiram, A., Nozik, A., Rolison, D.R., Sands, T., Shi, L., Sholl, D., Wu, Y., Energy Environ. Sci. 2, 559 (2009).Google Scholar
36. Lan, Y., Poudel, B., Ma, Y., Wang, D., Dresselhaus, M.S., Chen, G., Ren, Z., Nano Letters 9, 1419 (2009).Google Scholar
37. Kanatzidis, M.G., The role of solid-state chemistry in the discovery of new thermoelectric materials, in: Tritt, T.∼M. (Ed.), Semiconductors and Semimetals: Recent Trends in Thermoelectric Materials Research II, Vol.∼69, Academic Press, San Diego, CA, 2001, pp. 51–98.Google Scholar
38. Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J., Science 521 (3588), 554, (2008).Google Scholar
39. Chiritescu, C., Cahill, D. G., Nguyen, N., Johnson, D., Bodapati, A., Keblinski, P., Zschack, P., Science 315(5810), 351 (2007).Google Scholar
40. Snyder, G.J., Toberer, E.S., Nature Materials 7(2), 105 (2008).Google Scholar
41. Henry, A., Chen, G., Physical Review B 79(14), 144305 (2009).Google Scholar
42. Minnich, A. J., Johnson, J. A., Schmidt, A. J., Esfarjani, K., Dresselhaus, M. S., Nelson, K. A., Chen, G., Physical Review L, submitted.Google Scholar
43. Zebarjadi, M., Joshi, G., Zhu, G., Yu, B., Minnich, A., Lan, Y., Wang, X., Dresselhaus, M.S., Ren, Z., Chen, G., Nano Letters, in press (2011).Google Scholar
44. Hin, C., Dresselhaus, M.S., Chen, G., Applied Physics Letter, submitted.Google Scholar
45. Uher, C., Yang, J., Hu, S., Morelli, D. T., and Meisner, G. P., Phys. Rev. B 59, 8615 (1999).Google Scholar
46. Hohl, H., Ramirez, A. P., Goldmann, C., Ernst, G., Wolfing, B., and Bucher, E., J. Phys.: Condens. Matter 11, 1697 (1999).Google Scholar
47. Mastronardi, K., Young, D., Wang, C. C., Khalifah, P., Cava, R. J., and Ramirez, A. P., Appl. Phys. Lett. 74, 1415 (1999).Google Scholar
48. Nolas, G.S, Morelli, D.T., Tritt, T.M., Annu.Rev.Mater.sci.29(89),116 (1999).Google Scholar