Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T02:55:35.058Z Has data issue: false hasContentIssue false

Leaf-litter decomposition across three flooding regimes in a seasonally flooded Amazonian watershed

Published online by Cambridge University Press:  01 February 2011

Krista A. Capps*
Affiliation:
Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853
Manuel A. S. Graça
Affiliation:
IMAR-CMA & Department of Life Sciences, University of Coimbra, Coimbra, Portugal
Andrea C. Encalada
Affiliation:
IMAR-CMA & Department of Life Sciences, University of Coimbra, Coimbra, Portugal Laboratorio de Ecología Acuática, Universidad San Francisco de Quito, Quito, Ecuador
Alexander S. Flecker
Affiliation:
Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY14853
*
1Corresponding author. Email: kac98@cornell.edu

Extract

Decomposition of leaf litter is an important process that releases energy and nutrients in both terrestrial and aquatic environments (Moore et al. 2004, Wallace et al. 1997); therefore, the physical, chemical and biological processes controlling leaf-litter decomposition rates can affect nutrient cycling and productivity in these systems (Cross et al. 2007, Wood et al. 2009). Several studies have shown that leaf decomposition is faster in aquatic than in terrestrial habitats due to relatively constant temperatures, continuous leaching and the physical breakdown of leaves by flowing water (Hutchens & Wallace 2002, Langhans & Tockner 2006, Langhans et al. 2008). Yet, comparatively few studies have examined these relationships in tropical systems with flooded forests. Flooding is a predominant feature of the upper Amazon Basin, but its occurrence and magnitude is complex and not strictly seasonal (Junk et al. 1989). To identify the dominant energy pathways and understand the nutrient dynamics of upper Amazon rain forests, it is imperative to investigate organic matter processing in the aquatic/terrestrial transition zones of these ecosystems.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ABELHO, M. 2001. From litterfall to decomposition in streams: a review. Scientific World 1:656680.CrossRefGoogle ScholarPubMed
ANDERSON, J. M. 1991. The effects of climate change on decomposition processes in grassland and coniferous forests. Ecological Applications 1:326347.CrossRefGoogle ScholarPubMed
BATTLE, J. M. & GOLLADAY, S. W. 2007. How hydrology, habitat type, and litter quality affect leaf decomposition in wetlands on the gulf coastal plain of Georgia. Wetlands 27:251260.CrossRefGoogle Scholar
BERGFUR, J., JOHNSON, R. K., SANDIN, L., GOEDKOOP, W. & NYGREN, K. 2007. Effects of nutrient enrichment on boreal streams: invertebrates, fungi and leaf-litter decomposition. Freshwater Biology 52:16181633.CrossRefGoogle Scholar
BRAGA-NETO, R., LUIZAO, R. C. C., MAGNUSSON, W. E., ZUQUIM, G. & DE CASTILHO, C. V. 2008. Leaf litter fungi in a Central Amazonian forest: the influence of rainfall, soil and topography on the distribution of fruiting bodies. Biodiversity and Conservation 17:27012712.CrossRefGoogle Scholar
CISNEROS-DOZAL, L. M., TRUMBORE, S. E. & HANSON, P. J. 2007. Effect of moisture on leaf litter decomposition and its contribution to soil respiration in a temperate forest. Journal of Geophysical Research – Biogeosciences 112:10.CrossRefGoogle Scholar
CORNEJO, F. H., VARELA, A. & WRIGHT, S. J. 1994. Tropical forest litter decomposition under seasonal drought-nutrient release, fungi and bacteria. Oikos 70:183190.CrossRefGoogle Scholar
CORNELISSEN, J. H. C., PÉREZ-HARGUINDEGUY, S., GRIME, J. P., MARZANO, B., CABIDO, M., VENDRAMINI, F. & CERABOLINI, B. 1999. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytologist 143:191200.CrossRefGoogle Scholar
CROSS, W. F., WALLACE, J. B. & ROSEMOND, A. D. 2007. Nutrient enrichment reduces constraints on material flows in a detritus-based food web. Ecology 88:25632575.CrossRefGoogle Scholar
DE NEIFF, A. P., NEIFF, J. J. & CASCO, S. L. 2006. Leaf litter decomposition in three wetland types of the Parana River floodplain. Wetlands 26:558566.CrossRefGoogle Scholar
DIDHAM, R. K. 1998. Altered leaf-litter decomposition rates in tropical forest fragments. Oecologia 116;397406.CrossRefGoogle ScholarPubMed
ENCALADA, A. C., CALLES, J., FERREIRA, V., CANHOTO, C. & GRAÇA, M. C. 2010. Riparian land use and the relationship between benthic communities and litter decomposition in tropical montane streams. Freshwater Biology 55:17191733.CrossRefGoogle Scholar
GESSNER, M. O. 2005. Ergosterol as a measure of fungal biomass. Pp. 189195 in Graça, M. A. S., Barlocher, F. & Gessner, M. O. (eds.). Methods to study litter decomposition: a practical guide. Springer, Amsterdam.CrossRefGoogle Scholar
GRAÇA, M. A. S. & CRESSA, C. 2010. Leaf quality of some tropical and temperate tree species as food resource for stream shredders. International Review of Hydrobiology 95:2741.CrossRefGoogle Scholar
GRAÇA, M. A. S., FERREIRA, R. C. F. & COIMBRA, C. N. 2001. Litter processing along a stream gradient: the role of invertebrates and decomposers. Journal of the North American Benthological Society 20:408420.CrossRefGoogle Scholar
HADDAD, V., BICUDO, L. R. H. & FRANSOZO, A. 2009. The Triplaria tree (Triplaris spp.) and Pseudomyrmex ants: a symbiotic relationship with risks of attack for humans. Revista da Sociedade Brasileira de Medicina Tropical 42:727729.CrossRefGoogle Scholar
HUTCHENS, J. J. & WALLACE, J. B. 2002. Ecosystem linkages between southern Appalachian headwater streams and their banks: leaf litter decomposition and invertebrate assemblages. Ecosystems 5:8091.CrossRefGoogle Scholar
JUNK, W. J., BAYLEY, P. B. & SPARKS, R. E. 1989. The flood pulse concept in river-floodplain systems, Pp. 110127 in Dodge, D. P. (ed.). Proceedings of the International Large River Symposium (Lars) (Canadian special publication of fisheries and aquatic sciences). Department of Fisheries and Oceans, Ottowa, Canada.Google Scholar
KURSAR, T. A., DEXTER, K. G., LOKVAM, J., PENNINGTON, R. T., RICHARDSON, J. E., WEBER, M. G., MURAKAMI, E. T., DRAKE, C., MCGREGOR, R. & COLEY, P. D. 2009. The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proceedings of the National Academy of Sciences of the United States of America 106:1807318078.CrossRefGoogle ScholarPubMed
LANGHANS, S. D. & TOCKNER, K. 2006. The role of timing, duration, and frequency of inundation in controlling leaf litter decomposition in a river-floodplain ecosystem (Tagliamento, northeastern Italy). Oecologia 147:501509.CrossRefGoogle Scholar
LANGHANS, S. D., TIEGS, S. D., GESSNER, M. O. & TOCKNER, E. 2008. Leaf-decomposition heterogeneity across a riverine floodplain mosaic. Aquatic Sciences 70:337346.CrossRefGoogle Scholar
LARREA-ALCAZAR, D. M. & SIMONETTI, J. A. 2007. Why are there few seedlings beneath the myrmecophyte Triplaris americana? Acta Oecologica 32:112118.CrossRefGoogle Scholar
LOKVAM, J., CLAUSEN, T. P., GRAPOV, D., COLEY, P. D. & KURSAR, T. A. 2007. Galloyl depsides of tyrosine from young leaves of Inga laurina. Journal of Natural Products 70:134136.CrossRefGoogle ScholarPubMed
MEDEIROS, A. O., PASCOAL, C. & GRAÇA, M. A. S. 2009. Diversity and activity of aquatic fungi under low oxygen conditions. Freshwater Biology 54:142149.CrossRefGoogle Scholar
MOORE, C. M., BERLOW, E. L., COLEMAN, D. C., DE RUITER, P. C., DONG, Q., HASTINGS, A., COLLINS JOHNSON, N., MCCANN, K. S., MELVILLE, K., MORIN, P. J., NADELHOFFER, K., ROSEMOND, A. D., POST, D. M., SABO, J. L., SCOW, K. M., VANNI, M. J. & WALL, D. H. 2004. Detritus, trophic dynamics, and biodiversity. Ecology Letters 7:584600.CrossRefGoogle Scholar
NECKLES, H. A. & NEILL, C. 1994. Hydrologic control of litter decompositon in seasonally flooded prairie marshes. Hydrobiologia 286:155165.CrossRefGoogle Scholar
OSONO, T., ISHII, Y. & HIROSE, D. 2008. Fungal colonization and decomposition of Castanopsis sieboldii leaves in a subtropical forest. Ecological Research 23:909917.CrossRefGoogle Scholar
PADIAL, A. A. & THOMAZ, S. M. 2006. Effects of flooding regime upon the decomposition of Eichhornia azurea (Sw.) Kunth measured on a tropical, flow-regulated floodplain (Parana River, Brazil). River Research and Applications 22:791801.CrossRefGoogle Scholar
RAMSEYER, U. & MARCHESE, M. 2009. Leaf litter of Erythrina crista-galli L. (ceibo): trophic and substratum resources for benthic invertebrates in a secondary channel of the Middle Parana River. Limnetica 28:110.CrossRefGoogle Scholar
RINCON, J. & SANTELLOCO, R. 2009. Aquatic fungi associated with decomposing Ficus sp. leaf litter in a neotropical stream. Journal of the North American Benthological Society 28:416425.CrossRefGoogle Scholar
RUEDA-DELGADO, G., WANTZEN, K. M. & TOLOSA, M. B. 2006. Leaf-litter decomposition in an Amazonian floodplain stream: effects of seasonal hydrological changes. Journal of the North American Benthological Society 25:233249.CrossRefGoogle Scholar
VASCONCELOS, H. L. & LAURANCE, W. F. 2005. Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape. Oecologia 144:456462.CrossRefGoogle Scholar
WALLACE, J. B., EGGERT, S. L., MEYER, J. L. & WEBSTER, J. R. 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102104.CrossRefGoogle Scholar
WARD, P. S. 1999. Systematics, biogeography and host plant associations of the Pseudomyrmex viduus group (Hymenoptera: Formicidae), Triplaris- and Tachigali-inhabiting ants. Zoological Journal of the Linnean Society 126:451540.CrossRefGoogle Scholar
WOOD, T. E., LAWRENCE, D., CLARK, D. A. & CHAZDON, R. L. 2009. Rain forest nutrient cycling and productivity in response to large-scale litter manipulation. Ecology 90:109121.CrossRefGoogle ScholarPubMed
WRIGHT, M. S. & COVICH, A. P. 2005. Relative importance of bacteria and fungi in a tropical headwater stream: leaf decomposition and invertebrate feeding preference. Microbial Ecology 49:536546.CrossRefGoogle Scholar
YULE, C. M. & GOMEZ, L. N. 2009. Leaf litter decomposition in a tropical peat swamp forest in Peninsular Malaysia. Wetlands Ecology and Management 17:231241.CrossRefGoogle Scholar