Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-13T03:15:18.878Z Has data issue: false hasContentIssue false

Mechanisms Governing the Inelastic Deformation of Cortical Bone

Published online by Cambridge University Press:  01 February 2011

C. Mercer
Affiliation:
Materials Department, University of California Santa Barbara, Santa Barbara, CA 93106, U.S.A.
R. Wang
Affiliation:
Department of Materials Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
A. G. Evans
Affiliation:
Materials Department, University of California Santa Barbara, Santa Barbara, CA 93106, U.S.A.
Get access

Abstract

To understand the inelastic response of bone, a two-part investigation has been conducted. In the first, a flexural test protocol has been designed and implemented that monitors the axial and transverse strains on both the tensile and compressive surfaces of cortical bone. The results are used to assess the relative contributions of dilatation and shear to the inelastic deformation. Unload/reload tests have characterized the hysteresis and provided insight about the mechanisms causing the strain. These tests reveal strain healing attributed to sacrificial bonds. The second part devises a model for the stress/strain response, based on a recent assessment of the nano-scale organization of the collagen fibrils and mineral platelets. The model rationalizes the inelastic deformation in tension, as well as the permanent strain and hysteresis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gibson, L. J. and Ashby, M. F., Cellular Solids: Structure and Properties, Pergamon Press, Oxford, U. K. (1988).Google Scholar
2. Braidotti, P., Branca, F. P. and Stagni, L., J. Biomech., 30, 155 (1997).Google Scholar
3. Saski, N., Tagami, A., Goto, T., Taniguchi, M., Nakata, M. and Hikichi, K., J. Materials Science: Materials in Medicine, 13, 333 (2002).Google Scholar
4. Katz, E. P. and Li, S. T., J. Mol. Bio., 73, 351 (1973).Google Scholar
5. Gibson, L. J., J. Biomech., 18, 317 (1985).Google Scholar
6. Currey, J. D., Clin. Orthopaed. Rel. Res., 73, 209 (1970).Google Scholar
7. Currey, J. D., The Mechanical Adaptations of Bones, Princeton University Press, Princeton, NJ (1984).Google Scholar
8. Reilly, D. T. and Burstein, A. H., J. Biomech., 8, 393 (1975).Google Scholar
9. Stölken, J. S. and Kinney, J. H., Bone, 33, 494 (2003).Google Scholar
10. Hayes, W. C. and Carter, D. R., J. Biomed. Mat. Res., 10, 537 (1976).Google Scholar
11. Burr, D. B. and Hooser, M., Bone, 17, 431 (1995).Google Scholar
12. Wang, R. Z., Suo, Z., Evans, A. G., Yao, N. and Aksay, I. A., J. Mater Res., 16, 2485 (2001).Google Scholar
13. Evans, A. G. and Zok, F. W., Solid State Physics, 47, 177 (1994).Google Scholar
14. Moore, T. L. A. and L Gibson, J., J. Biomech Eng., 125, 769 (2003).Google Scholar
15. Smith, B. L. et al., Nature, 399, 761 (1999).Google Scholar
16. Thompson, J. B., Nature, 414, 773 (2001).Google Scholar
17. Watanabe, M., Mercer, C., Levi, C. G. and Evans, A. G., Acta Mater., 52, 1479 (2004).Google Scholar
18. Bennett, M. B., Ker, R. F., Dimery, N. J. and Alexander, R. M., J. Zool., Lond., 209, 537 (1986).Google Scholar
19. Landis, W. J., Bone, 16, 533 (1995).Google Scholar
20. Weiner, S. and Wagner, H. D., Annual Rev. Mater. Sci., 28, 271 (1998).Google Scholar
21. Eppell, S. J., Tong, W., Katz, J. L., Kuhn, L. and Glimcher, M. J., J. Orthopaed. Res., 19, 1027 (2001).Google Scholar