Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T21:35:33.573Z Has data issue: false hasContentIssue false

Vacancy Supersaturation Model for Electromigration Failure Under DC and Pulsed DC Stress

Published online by Cambridge University Press:  15 February 2011

J. J. Clement*
Affiliation:
Digital Equipment Corp., 77 Reed Road, Hudson, MA 01749
Get access

Abstract

Time-dependent vacancy concentration profiles are calculated numerically as solutions to the electromigration transport equation under dc and pulsed dc current stress conditions in finite-length conductors. An electromigration model based on the buildup of a critical vacancy supersaturation to initiate failure agrees well with several reported experimental observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Black, J. R., Proc. 6th Annual International Reliability Physics Symposium (IEEE, New York, 1967), p. 148.Google Scholar
2. Hoffman, G. L. and Breitling, H. M., Proc. IEEE (Lett.), 58, 833 (1970).CrossRefGoogle Scholar
3. Blair, J. C., Ghate, P. B., and Haywood, C. T., Proc. IEEE (Lett.), 59, 1023 (1971).CrossRefGoogle Scholar
4. Shatzkes, M. and Lloyd, J. R., J. Appl. Phys. 59, 3890 (1986).CrossRefGoogle Scholar
5. Towner, J. M. and Ven, E. P. van de, Proc. 21st Annual International Reliability Physics Symposium (IEEE, New York, 1983), p. 36.CrossRefGoogle Scholar
6. Brooke, L., Proc. 25th Annual International Reliability Physics Symposium (IEEE, New York, 1987), p. 136.CrossRefGoogle Scholar
7. Maiz, J. A., Proc. 27th Annual International Reliability Physics Symposium (IEEE, New York, 1989), p. 220.Google Scholar
8. Pichler, P., Jiingling, W., Selberherr, S., Guerrero, E., and Pötzl, H., IEEE Trans. Computer Aided Design CAD–4, 384 (1985).CrossRefGoogle Scholar
9. Clement, J. J. and Lloyd, J. R., J. Appl. Phys. 71, 1729 (1992).CrossRefGoogle Scholar
10. deGroot, S. R., Physica 9, 699 (1942).CrossRefGoogle Scholar
11. Lloyd, J. R. and Smith, P. M., J. Vac. Sci. Technol. Al, 455 (1983)CrossRefGoogle Scholar
12. Ross, C. A., Drewery, J. S., Somekh, R. E., and Evetts, J. E., J. Appl. Phys. 66, 2349 (1989).CrossRefGoogle Scholar
13. Kirchheim, R. and Kaeber, U., J. Appl. Phys. 70, 172 (1991).CrossRefGoogle Scholar
14. Blech, I. A., J. Appl. Phys. 47, 1203 (1976).CrossRefGoogle Scholar
15. There is a typographical error in the solution given in Reference [4]. is the correct solution, where Google Scholar
16. d'Heurle, F. M. and Ho, P. S., in Thin Films - Interdiffusion and Reactions, edited by Poate, J. M., Tu, K. N., and Mayer, J. W. (Wiley, New York, 1978), p. 243.Google Scholar
17. Lloyd, J. R. and Kitchin, J., J. Appl. Phys. 69, 2117 (1991).CrossRefGoogle Scholar