Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T20:00:43.273Z Has data issue: false hasContentIssue false

Thermomechanical Formation an Thermal Sensing of Nanometer-Scal Indenatations in PMMA Thin Films for Parallel and Dense AFM Data Storage

Published online by Cambridge University Press:  17 March 2011

Graham L.W. Cross
Affiliation:
IBM Research, Zurich Research Laborator, CH-8803 Rüschlikon, Switzerland
Michel Despont
Affiliation:
IBM Research, Zurich Research Laborator, CH-8803 Rüschlikon, Switzerland
Ute Drechsler
Affiliation:
IBM Research, Zurich Research Laborator, CH-8803 Rüschlikon, Switzerland
Urs T. Dürig
Affiliation:
IBM Research, Zurich Research Laborator, CH-8803 Rüschlikon, Switzerland
Hugo Rothuizen
Affiliation:
IBM Research, Zurich Research Laborator, CH-8803 Rüschlikon, Switzerland
Gerd K. Binnig
Affiliation:
IBM Research, Zurich Research Laborator, CH-8803 Rüschlikon, Switzerland
Petr Vettiger
Affiliation:
IBM Research, Zurich Research Laborator, CH-8803 Rüschlikon, Switzerland
William P. King
Affiliation:
Department of Mechanical Engineering, Stanford University, CA 94305-3030, U.S.A.
Kenneth E. Goodson
Affiliation:
Department of Mechanical Engineering, Stanford University, CA 94305-3030, U.S.A.
Get access

Abstract

Thermomechanical writing occurs as Joule-heated, cantilevered tips imprint nanometer-scale inden (bits) in a 50-nm-thick polymer (PMMA) film. Thermal data reading incorporates the same cantilevers operated in a mode to detect a temperature change when a tip follows the contour of a previously written bit. Binnig et.al [1] demonstrated single-cantilever writing and rading density at 400 Gbit/in2. A micromachined 32 × 32 cantilever array has been fabricated [2] and has demonstrated parallel read/write operation at 150 Gbi/in in2 [3]. Although much progress has been made to develop a thermomechanical data storage device [4], the fundamental process of thermomechanical storage processes by applying atomic force microscope (AFM)-based force detection during thermal operation. We examined the thermomechanics of polymer indentation with respect to time and temperature of interaction. This work impacts the operation of AFM cantilevens for combined thermal writing and reading and understnding of fundamental polymer mesoscopic transport.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Binnig, G.K., Despont, M., Drechsler, U., Häberle, W., Lutwyche, M.I., Vettiger, P., Mamin, H.J., Chui, B.W., and Kenny, T.W., Appl. Phys. Lett. 74, 13291331 (1999).Google Scholar
[2] Despont, M., Brugger, J., Drechsler, U., Dürig, U., Häberle, W., Lutwyche, M. I., Rothuizen, H.E., Stutz, R., Widmer, R., and Binnig, G.K., Rohrer, H., and Vettiger, P., Sensors & Actuators A 73, 1117(1999).Google Scholar
[3] Lutwyche, M.I., Despont, M., Drechsler, U., Häberle, W., Rothuizen, H.E., Stutz, R., Widmer, R., Binnig, G.K., and Vettiger, P., Appl. Phys. Lett., 77, 32993301 (2000).Google Scholar
[4] Vettiger, P., Despont, M., Drechsler, U., Dürig, U., Häberle, W., Lutwyche, M.I., Rothuizen, H.E., Stutz, R., Widmer, R., and Binnig, G.K., IM J. Res. Develop. 44, 323340 (2000).Google Scholar
[5] Ferry, J. D., Viscoelastic Properties of Polymers (Wiley, Newyork, 1980)Google Scholar
[6] Fuchs, K., Friedrich, Chr., and Weese, J., Macromolecules 29, 58935901 (1996).Google Scholar
[7] Jones, David R.H. and Ashby, Michael F., Engineering Materials 2: Introduction to Microstructures, Processing and Design (Pergamon Press, 1987).Google Scholar