Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T19:57:50.806Z Has data issue: false hasContentIssue false

Layer-by-Layer Growth of GaN on Sapphire by Low Temperature Cyclic Pulsed Laser Deposition / Nitrogen RF Plasma

Published online by Cambridge University Press:  01 February 2011

P. Sanguino
Affiliation:
Departamento de Física, Instituto Superior Técnico, Lisboa, Portugal
M. Niehus
Affiliation:
Departamento de Física, Instituto Superior Técnico, Lisboa, Portugal
S. Koynov
Affiliation:
Departamento de Física, Instituto Superior Técnico, Lisboa, Portugal
R. Schwarz
Affiliation:
Departamento de Física, Instituto Superior Técnico, Lisboa, Portugal
H. Alves
Affiliation:
Justus-Liebig University, Giessen, Germany
B. Meyer
Affiliation:
Justus-Liebig University, Giessen, Germany
Get access

Abstract

Recently we have proposed a new layer-by-layer method for deposition of group-III nitrides from elemental precursors (Ga, N2) [1,2]. This technique is based on a two-step cyclic process, which alternates Pulsed Laser Deposition (PLD), of a liquid gallium target and nitrogen plasma treatment. In this work, we proceed on the development of this flexible cyclic deposition technique and study the influence of the power and time duration of the 1 mbar nitrogen RF plasma on the GaN thin films. The layers are deposited on pre-nitridated sapphire (0001) substrates at low deposition temperature (600° C) to minimise reevaporation. The cyclic GaN thin films thus obtained are compared in terms of crystal alignment and nitrogen incorporation. X-ray diffraction and optical transmission spectra are the selected tools used to characterise and compare the deposited films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Koynov, S., Sanguino, P., Niehus, M., Melo, L., Schwarz, R., to be published in Materials Science and Engineering B, (2001).Google Scholar
2. Sanguino, P., Koynov, S., Niehus, M., Melo, L., Schwarz, R., to be published on Materials Research Society Proceedings Fall Meeting, (2002).Google Scholar
3. Willmott, P. R. and Huber, J. R., Rev. Mod. Phys., 72, 315 (2000)Google Scholar
4. Timm, R., Willmott, P. R., and Huber, J. R., J. Appl. Phys. 80 (3), 1794 (1996).Google Scholar
5. Six, S., Gerlach, J. W., Rauschenbach, B., Thin Solid Films 370, 1 (2000)Google Scholar
6. Sankur, H., Gunning, W. J., DeNatale, J., and Flintoff, J. F., J. Appl. Phys. 65 (6), 2475 (1989).Google Scholar
7. Hayamizu, S., Tabata, H., Tanaka, H., and Kawai, T., J. Appl. Phys. 80 (2), 787 (1996).Google Scholar
8. Mérel, P., Chaker, M., Pépin, H., and Tabbal, M., Mat. Res. Soc. Symp. Proc. Vol. 572, 401 (1999)Google Scholar
9. Xiao, R. F., Liao, H. B., Cue, N., Sun, X. W., Kwok, H. S., J. Appl. Phys. 80 (7), 4226 (1996).Google Scholar
10. Sun, X. W., Xiao, R. F., Kwok, H. S., J. Appl. Phys. 84(10), 5776 (1998).Google Scholar
11. Deiss, J. L., Hirlimann, Ch., Loison, J.L., Robino, M., Versini, G., Materials Science and Engineering B 82, 68 (2001)Google Scholar
12. Willmott, P.R., Antoni, F., Appl. Phys. Lett. 73 (10), 1394 (1998).Google Scholar
13. Willmott, P.R., Antoni, F., and Döbeli, M., J. Appl. Phys. 88 (1), 188 (2000).Google Scholar