Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T18:01:09.069Z Has data issue: false hasContentIssue false

Superconductors in confined geometries

Published online by Cambridge University Press:  26 February 2011

Zhili Xiao
Affiliation:
xiao@anl.gov, Argonne National Laboratory, Materials Science Division, 9700 S. Cass Avenue, Argonne, IL, 60439, United States, 630-252-8762, 630-252-7777
Yew-San Hor
Affiliation:
hor@anl.gov, United States
Ulrich Welp
Affiliation:
welp@anl.gov
Yasuo Ito
Affiliation:
ito@anl.gov
Umesh Patel
Affiliation:
upatel@anl.gov
Jiong Hua
Affiliation:
jhua@anl.gov
John Mitchell
Affiliation:
mitchell@anl.gov
Wai-Kwong Kwok
Affiliation:
wkwok@anl.gov
George W. Crabtree
Affiliation:
crabtree@anl.gov
Get access

Abstract

The synthesis of nanoscale superconductors with controlled geometries is extremely challenging. In this paper we present results on synthesis and characterization of one-dimensional (1D) NbSe2 superconducting nanowires/nanoribbons. Our synthesis approach includes the synthesis of 1D NbSe3 nanostructure precursors followed by nondestructive and controlled adjustment of the Se composition to formulate NbSe2. The morphology, composition and crystallinity of the synthesized 1D NbSe2 nanostructures were analyzed with scanning electron microscopy, x-ray diffraction and transmission electron microscopy. Transport measurements were carried out to explore the electronic properties of these confined superconducting nanostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hu, J. T., Odom, T. W., and Lieber, Ch. M., Acc. Chem. Res. 32, 435 (1999).Google Scholar
2. Dresselhaus, M. S., Lin, Y. M., Rabin, O., Jorio, A., Souza, A. G., Pimenta, M. A., Saito, R., Samsonidze, G. G., and Dresselhaus, G., Mater. Sci. Eng. C 23, 129 (2003).Google Scholar
3. Wang, Z. L., J. Phys.-Cond. Mat. 16, R829–R858 (2004).Google Scholar
4. Xia, Y. N., Yang, P. D., Sun, Y. G., Wu, Y. Y., Mayers, B., Gates, B., Yin, Y. D., Kim, F., and Yan, Y. Q., Adv. Mater. 15, 353 (2003).Google Scholar
5. Duan, X. F., Huang, Y., Cui, Y., Wang, J. F., and Lieber, C. M., Nature 409, 66 (2001).Google Scholar
6. Pan, Z. W., Dai, Z. R., and Wang, Z. L., Science 291, 1947 (2001).Google Scholar
7. Song, J. H., Wu, Y. Y., Messer, B., Kind, H., and Yang, P. D., J. Am. Chem Soc. 123, 10397 (2001).Google Scholar
8. Murphy, C. J. and Jana, N.R., Adv. Mater. 14, 80 (2002).Google Scholar
9. Gu, G., Zheng, B., Han, W. Q., Roth, S., and Liu, J., Nano Lett. 2, 849 (2002).Google Scholar
10. Hu, J. Q., Jiang, Y., Meng, X. M., Lee, C. S., and Lee, S. T., Chem. Phys. Lett. 367, 339 (2003).Google Scholar
11. Thurn-Albrecht, T., Schotter, J., Kastle, C. A., Emley, N., Shibauchi, T., Krusin-Elbaum, L., Guarini, K., Black, C. T., Tuominen, M. T., and Russell, T. P., Science 290, 2126 (2000).Google Scholar
12. Mohaddes-Ardabili, L., Zheng, H., Ogale, S. B., Hannoyer, B., Tian, W., Wang, J., Lofland, S. E., Shinde, S. R., Zhao, T., Jia, Y., Salamanca-Riba, L., Schlom, D. G., Wuttig, M., and Ramesh, R., Nature Mater. 3, 533 (2004).Google Scholar
13. Geim, A. K., Grigorieva, I. V., Dubonos, S. V., Lok, J. G. S., Maan, J. C., Filippov, A. E., and Peeters, F. M., Nature 390, 259 (1997).Google Scholar
14. Bolle, C. A., Aksyuk, V., Pardo, F., Gammel, P. L., Zeldov, E., Bucher, E., Boie, R., Bishop, D. J., and Nelson, D. R., Nature 399, 43 (2000).Google Scholar
15. Geim, A. K., Dubonos, S. V., Grigorieva, I. V., Novoselov, K. S., Peeters, F. M., and Schweigert, V. A., Nature 407, 55 (2000).Google Scholar
16. Chibotaru, L. F., Ceulemans, A., Bruyndoncx, V., and Moshchalkov, V. V., Nature 408, 833 (2000).Google Scholar
17. Bezryadin, A., Lau, C. N., and Tinkham, M., Nature 404, 971 (2000).Google Scholar
18. Rogachev, A. and Bezryadin, A., Appl. Phys. Lett. 83, 512 (2003).Google Scholar
19. Rogachev, A., Bollinger, A. T., and Bezryadin, A., Phys. Rev. Lett. 94, 017004 (2005).Google Scholar
20. Michotte, S, Matefi-Tempfli, S., and Piraux, L., Appl. Phys. Lett. 82, 4119 (2003).Google Scholar
21. Han, C. Y., Xiao, Z. L., Wang, H. H., Willing, G. A., Geiser, U., Welp, U., Kwok, W. K., Bader, S. D., and Crabtree, G. W., Plating and Surface Finishing 91, 40 (2004).Google Scholar
22. Wang, Y. L., Jiang, X. C., Herricks, T., and Xia, Y. N., J. Phys. Chem. B 108, 8631 (2004).Google Scholar
23. Xiao, Z. L., Han, C. Y., Kwok, W. K., Wang, H. W., Welp, U., Wang, J., and Crabtree, G. W., J. Am. Chem. Soc. 126, 2316 (2004).Google Scholar
24. Yang, Q., Sha, J., Ma, X. Y., Ji, Y. J., and Yang, D. R., Supercond. Sci. Technol. 17, L31 (2004).Google Scholar
25. Wu, Y. Y., Messer, B., and Yang, P. D., Adv. Mater. 13, 1487 (2001).Google Scholar
26. Xiao, Z. L., Andrei, E. Y., and Higgins, M. J., Phys. Rev. Lett. 83, 1664 (1999).Google Scholar
27. Xiao, Z. L., Andrei, E. Y., Shuk, P., and Greenblatt, M., Phys. Rev. Lett. 86, 2431 (2001).Google Scholar
28. van Smaalen, S., de Boer, J. L., Meetsma, A., Graagsma, H., Sheu, H-S., Darovskikh, A., and Coppens, P., Phys. Rev. B 45, 3103 (1992).Google Scholar
29. Prodan, A., Jug, N., van Midden, H. J. P., Bohm, H., Boswell, F. W., and Bennett, J. C., Phys. Rev. B 64, 115423 (2001).Google Scholar
30. Levy, F. and Berger, H., J. Crystal Growth 61, 61(1983).Google Scholar
31. Mantel, O. C., Chalin, F., Dekker, C., van der Zant, H. S.J., Latyshev, Y. I., Pannetier, B., and Monceau, P., Phys. Rev. Lett. 84, 538 (2000).Google Scholar
32. Zaitsev-Zotov, S. V., Microelectronic Eng. 69, 549 (2003).Google Scholar
33. Hor, Y. S., Xiao, Z. L., Welp, U., Ito, Y., Mitchell, J. F., Kwok, W. K., and Crabtree, G. W., Nano Lett. 5, 397 (2005).Google Scholar
34. McCarten, J., Maher, M., Adelman, T. L. and Thorne, R. E., Phys. Rev. Lett. 63, 2841(1989).Google Scholar
35. Hodeau, J. L., Marezio, M., Roucau, C., Ayroles, R., Meerschaut, A., Rouxel, J., and Monceau, P., J. Phys. C: Solid State Phys. 11, 4117 (1978).Google Scholar
36. S Hor, Y., Welp, U., Ito, Y., Xiao, Z. L., Mitchell, J. F., Kwok, W. K., and Crabtree, G. W., Appl. Phys. Lett. 87, 142506 (2005).Google Scholar
37. Higgins, M. J. and Bhattacharya, S., Physica C 257, 232 (1996).Google Scholar
38. Dubois, S., Michel, A., Eymery, J. P., Duvail, J. L., and Piraux, L., J. Mater. Res. 14, 665 (1999).Google Scholar
39. Paltiel, Y., Zeldov, E., Myasoedov, Y., Rappaport, M. L., Jung, G., Bhattacharya, S., Higgins, M. J., Xiao, Z. L., Andrei, E. Y., Gammel, P. L., and Bishop, D. J., Phys. Rev. Lett. 85, 3712 (2005).Google Scholar
40. Koch, R. H., Foglietti, V., Gallagher, W. J., Koren, G., Gupta, A. and Fisher, M. P. A., Phys. Rev. Lett. 63, 1511 (1989).Google Scholar
41. Fisher, M. P. A., Phys. Rev. Lett. 62, 1415 (1989).Google Scholar
42. Blatter, G., Feigelman, M. V., Geshenbein, V. B., Larkin, A. I., and Vinokur, V. M., Rev. Mod. Phys. 66, 1125 (1994).Google Scholar
43. Xiao, Z. L., Haring, J., Heinzel, C., and Ziemann, P., Solid State Comm. 95, 153 (1995).Google Scholar