Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T07:45:39.282Z Has data issue: false hasContentIssue false

Thermoelectric Properties of the Nanostructured NaPb18-xSnxMTe20 (M=Sb, Bi) Materials

Published online by Cambridge University Press:  01 February 2011

Aurelie Gueguen
Affiliation:
a-gueguen@northwestern.edu, Northwestern University, Chemistry, 2145 Sheridan road, Evanston, IL, 60208-6113, United States
Pierre Ferdinand Poudeu Poudeu
Affiliation:
f-poudeu@northwestern.edu, Northwestern University, Chemistry, Evanston, IL, 60208, United States
Robert Pcionek
Affiliation:
pcionekr@msu.edu, Michigan State University, Chemistry, East Lansing, MI, 48824, United States
Huijun Kong
Affiliation:
huijunk@umich.edu, University of Michigan, Physics, Ann Arbor, MI, 48109, United States
Ctirad Uher
Affiliation:
cuher@umich.edu, University of Michigan, Physics, Ann Arbor, MI, 48109, United States
Mercouri G. Kanatzidis
Affiliation:
m-kanatzidis@northwestern.edu, Northwestern University, Chemistry, Evanston, IL, 60208, United States
Get access

Abstract

The thermoelectric properties of materials with compositions NaPb18-xSnxMTe20 (M=Sb, Bi, x=0, 3, 5, 9, 13, 16 and 18) were investigated in the temperature range 300-670K. All compositions exhibited p-type behavior over the measured temperature range. Electronic properties and transport were tuned through the manipulation of the Pb/Sn ratio. Increasing the Sn fraction results in an increase in electrical conductivity and a decrease in thermopower. The compositions NaPb13Sn5SbTe20 and NaPb9Sn9SbTe20 show a lattice thermal conductivity of ∼1 W/m/K at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Venkatasubramanian, R., Sivola, E., Colpitts, T. and O'Quinn, B., Nature, 413, 597 (2001).Google Scholar
[2] Harman, T. C. Taylor, P. J. Walsh, M. P. Laforge, B. E. Science, 297, 2229 (2002).Google Scholar
[3] Harman, T. C. Walsh, M. P. Laforge, B. E. Turner, G. W. J. Electron. Mater. 24, L19 (2005).Google Scholar
[4] Hsu, K. F. Loo, S., Guo, F., Chen, W., Dyck, J. S. Uher, C., Hogan, T., Polychroniadis, E. K. Kanatzidis, M. G. Science, 303, 818 (2004).Google Scholar
[5] Quarez, E., Hsu, K. F. Pcionek, R., Frangis, N., Polychroniadis, E. K. Kanatzidis, M. G. J. Am. Chem. Soc. 127, 9177 (2005).Google Scholar
[6] Poudeu, P. F. P. D'Angelo, J., Downey, A. D. Short, J. L. Hogan, T. P. Kanatzidis, M. G. Angew. Chem. Int. Ed. 45, 3835 (2006).Google Scholar
[7] Androulakis, J., Hsu, K. F. Pcionek, R., Kong, H., Uher, C., D'Angelo, J., Downey, A. D., Hogan, T., Kanatzidis, M. G. Adv. Mater. 18, 1170 (2006).Google Scholar
[8] Orihashi, M., Noda, Y., Chen, L. D. Goto, T., Hirai, T., J. Phys. Chem. Solids, 61 919 (2000).Google Scholar
[9] Kim, W., Zide, J., Gossard, A., Klenov, D., Stemmer, S., Shakouri, A., Majumdar, A., Phys. Rev. Lett. 96 045901 (2006).Google Scholar
[10] Poudeu, P. F. P. D'Angelo, J., Kong, H., Downey, A., Short, J. L. Pcionek, R., Hogan, T. P. Uher, C., Kanatzidis, M. G. J. Am. Chem. Soc. 128 14347 (2006).Google Scholar