Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T17:22:23.207Z Has data issue: false hasContentIssue false

Roughness of electronic interfaces in Ga As p-n multilayers investigated by cross-sectional scanning tunneling microscopy

Published online by Cambridge University Press:  01 February 2011

N. D. Jäger
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
K. Urban
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
E. R. Weber
Affiliation:
Department of Materials Science, University of California and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A.
Ph. Ebert
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Get access

Abstract

We investigated the roughness of the electronic interfaces of GaAs p-n multilayers using cross-sectional scanning tunneling microscopy. We demonstrate that these interfaces exhibit a much larger roughness than the underlying essentially perfect ‘metallurgical’ interface, due to the individual long range electrostatic screening fields around each dopant atom near the interface and due to a clustering of dopant atoms. The clustering and the inherently connected local lack of dopant atoms gives rise to charge carrier depletion zones extending locally through entire nominally homogeneously doped layers once the layer thickness is close to the cluster dimensions. Thus, local variations in the dopant atom distribution limit the precision of the spatial and energetic positioning of the Fermi energy in nanoscale semiconductor structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Feenstra, R. M., Vaterlaus, A., Yu, E. T., Kirchner, P. D., Lin, C. L., Woodall, J. M., and Pettit, G. D., in: Semiconductor Interfaces at the Sub-Nanometer Scale, Eds. Salemink, H. W. M. and Pashley, M. D. (Kluwer Academic, Dordrecht, 1993), p. 127.Google Scholar
2. Feenstra, R. M., Yu, E. T., Woodall, J. M., Kirchner, P. D., Lin, C. L., and Pettit, G. D., Appl. Phys. Lett. 61, 795 (1992)Google Scholar
3. Jäger, N. D., Urban, K., Weber, E. R., and Ebert, Ph., Phys. Rev. B 65, in press (2002).Google Scholar
4. Ebert, Ph., Surf. Sci. Rep. 33, 121 (1999) and references therein.Google Scholar
5. Dingle, R. B., Phil. Mag. 46, 831 (1955)Google Scholar
6. Bennett, J. M. and Mattsson, L., Introduction to surface roughness and scattering (Optical Society of America, Washington D.C., 1989).Google Scholar
7. Feenstra, R. M., Collins, D. A., Ting, D. Z.-Y., Wang, M. W., and McGill, T. C., Phys. Rev. Lett. 72, 2749 (1994)Google Scholar
8. Harper, J., Weimer, M., Zhang, D., Lin, C.-H., and Pei, S. S., Appl. Phys. Lett. 73, 2805 (1998)Google Scholar
9. Barvosa-Carter, W., Twigg, M. E., Yang, M. J., and Whitman, L. J., Phys. Rev. B 63, 245311 (2001)Google Scholar
10. Ebert, Ph., Zhang, T., Kluge, F., Simon, M., Zhang, Zhenyu, and Urban, K., Phys. Rev. Lett. 83, 757 (1999)Google Scholar