Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T07:08:58.991Z Has data issue: false hasContentIssue false

Phosphorus Oxide Assisted n-type Dopant Diffusion in 4H-Silicon Carbide

Published online by Cambridge University Press:  01 February 2011

Suwan P Mendis
Affiliation:
mendisp@auburn.edu, Auburn University, Physics, Auburn, Alabama, United States
Chin-Che Tin
Affiliation:
tinchin@auburn.edu, Auburn University, Physics, Auburn, Alabama, United States
Get access

Abstract

Phosphorus is an important n-type dopant for both silicon and silicon carbide. Although solid-state diffusion of phosphorus in silicon has been well documented and experimentally proven, not much is known about phosphorus solid-state diffusion in silicon carbide, especially at lower temperatures. A convenient source of phosphorus for solid-state diffusion in silicon carbide is phosphorus oxide. The possibility of using phosphorus oxide as a dopant source for silicon carbide is investigated by considering the probable reactions between silicon carbide and phosphorus oxide at temperatures below 1700 K using published thermodynamic data. By considering the standard free energies of reactions, it can be shown that phosphorus can be introduced in silicon carbide at temperatures below 1700 K using phosphorus oxide. A successful development of low temperature dopant incorporation in silicon carbide would reduce the need for high temperature processes and prevent process-induced thermal degradation of critical device structures such as the oxide-semiconductor interface. Experimental results showing phosphorus impurity incorporation and activation in 4H-SiC are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Weitzel, C. E., Palmour, J. W., Carter, C. H., Moore, K., Nordquist, K. J., Allen, S., Thero, C., IEEE Trans. Electron Devices 43, 1732 (1996).Google Scholar
2 Roccaforte, F., Via, F. La, Ranieri, V., Int. J. High Speed Electron. Syst. 15 (4), 781820 (2005).Google Scholar
3 Rauls, E., Gerstmann, U., Frauenheim, Th., Overhof, H., Physica B 340-342, 184 (2003).Google Scholar
4 Larkin, D. J., Neudeck, P. G., Powell, J. A. and Matus, L. G. in Institute of Physics Conf. Series 137: Silicon Carbide and Related Materials, (The 5th SiC and Related Materials Conf., Washington, DC, 1993) pp. 5154.Google Scholar
5 Kern, R. S., Davis, R. F., Appl. Phys. Lett. 71 (10), 13561358 (1997).Google Scholar
6 Gao, Y., Soloviev, S. I., Sudarshan, T. S., Appl. Phys. Lett. 83 (5), 905907 (2003).Google Scholar
7 Gao, Y., Soloviev, S. I., Sudarshan, T. S., Tin, C. C., J. Appl. Phys. 90 (11), 56475651 (2001).Google Scholar
8 Meier, J., Achtziger, N., Licht, T., Uhrmacher, M., Witthuhn, W., Physica B 185 (1-4), 207210 (1993).Google Scholar
9 Kimoto, T., Itoh, A., Matsunami, H., Nakata, T., Watanabe, M., J. Electron. Mater. 25 (5), 879884 (1996).Google Scholar
10 Rao, M. V., Griffiths, P., Holland, O. W., Kelner, G., Freitas, J. A. Jr, Simons, D. S., Chi, P. H., Ghezzo, M., J. Appl. Phys. 77 (6), 24792485 (1995).Google Scholar
11 Mohammad, F. A., Cao, Y., Porter, L. M., Appl. Phys. Lett. 87, 161908 (2005).Google Scholar
12 Nikitina, I. P., Vassilevski, K. V., Wright, N. G., Horsfall, A. B., O'Neill, A. G., Johnson, C. M., J. Appl. Phys. 97, 083709 (2005).Google Scholar
13 Bourdais, S., Beaucarne, G., Slaoui, A., Poortmans, J., Semmache, B, Dubois, C., Sol. Energy Mater. Sol. Cells 65, 487 (2001).Google Scholar
14 Mathiot, D., Lachiq, A, Slaoui, A., Noël, S., Muller, J. C., Dubois, C., Mater. Sci. Semicond. Process. 1, 231 (1998).Google Scholar
15 Atabaev, I. G., Tin, C. C., Atabaev, B. G., Saliev, T. M., Bakhranov, E. N., Matchanov, N. A., Lutpullaev, S. L., Zhang, J., Saidkhanova, N. G., Yuzikaeva, F. R., Nuritdinov, I., Islomov, A. Kh., Amanov, M. Z., , Rusli, Kumta, A., Mater. Sci. Forum 600–603, 457 (2009).Google Scholar
16 Tin, C. C., Mendis, S., Chew, K., Atabaev, I., Saliev, T., Bakhranov, E., Atabaev, B., Adedeji, V., Rusli (in press). Oxide film assisted dopant diffusion in silicon carbide, Thin Solid FilmsGoogle Scholar
17 Negita, K., J. Am. Ceram. Soc. 69 (12), C308–C310 (1986).Google Scholar
18 Chase, M.W. Jr , NIST-JANAF Thermochemical Tables, 4th Ed. (National Institute of Standards and Technology, Gaithersburg, Maryland, 1998) pp. 5501823.Google Scholar
19 Hart, J. N., Allan, N. L., Oliva, J. M., Phys. Rev. B 79, 134115 (2009).Google Scholar
20 Lim, C. S., Nickel, H., Naoumidis, A., Gyarmati, E, J. Mater. Sci. 32, 6567 (1997).Google Scholar