Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T06:27:19.117Z Has data issue: false hasContentIssue false

Compliant Actuators Based on Electroactive Polymers

Published online by Cambridge University Press:  10 February 2011

S G. Wax
Affiliation:
Defense Science Office DARPA, Arlington, VA
R. R. Sands
Affiliation:
Technology Consultant, Arlington, VA
L. J. Buckley
Affiliation:
Naval Research Laboratory, Washington, DC
Get access

Abstract

The field of Electroactive Polymers has experienced a considerable amount of expansion over the last decade. Much of this work has been concentrated on developing polymeric materials that mimic biological systems or that exhibit electronic and optical properties similar to inorganic materials. This paper briefly reviews some of the nearer term applications that electroactive polymers might impact: image processing and sonar. In addition, a review of compliant actuators based on the unique properties inherent in electroactive polymers is provided. Emphasis will be placed on the mechanisms responsible for actuation and on the limited mechanical, electrical and chemical data current available. A comparison between mammalian muscle properties and electroactive polymer actuator properties is provided.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wax, S., and Sands, R., Proceedings of the SPIE Conference on Electroactive Polymer Actuators, 3669, pp. 210, Newport Beach, CA, Mar. 1999.Google Scholar
2. Scribner, D., Klein, R., Schuler, J., Howard, G., Langan, J., Finch, J., Trautfield, C., Taylor, S., Behm, R., and Costolo, M., IRIS Specialty Group on Passive Sensors, August 1999.Google Scholar
3. Langan, J., private communication.Google Scholar
4. Zhang, Q. M., Bharti, Vivek, and Zhao, X., Science 280, pp. 21012104, (1998).Google Scholar
5. Zhang, Q. M., Bhart, Vivek, Cheng, Z.Y., Xu, T.B., Wang, S., Ramotowski, T.S., Tito, F., and Ting, R., Proceedings of the SPIE Conference on Electroactive Polymer Actuators, 3669, pp. 134139, Newport Beach, CA, Mar. 1999.Google Scholar
6. DeRossi, D., Parrini, P., Chiarelli, P., and Buzzigol, G., Trans. Am. Soc. Artif. Intern. Organs. 31, pp. 6065, (1985).Google Scholar
7. Chiarelli, P., and DeRossi, D., Progr. Colloid. Polymer Sci. 78, pp. 48, (1988).Google Scholar
8. Osada, Y., and Gong, J.P., Proceedings of the SPIE Conference on Electroactive Polymer Actuators, 3669, pp. 1218, Newport Beach, CA, Mar. 1999.Google Scholar
9. Wasserman, A., A., ed. 1960. Size Changes of Contractile Polymers, Pergamon Press, New York, 1960.Google Scholar
10. Katchalsky, A., Michaeli, T., and Zwick, H., Size Changes of Contractile Polymers, Pergamon Press, New York, 1960.Google Scholar
11. Matsuo, E.S., and Tanaka, T., J. Chem. Phys. 89, pp. 16951701, (1988).Google Scholar
12. DeRossi, D., Suzuki, M., Osada, Y., and Morasso, P., of, J. Intell. Mater. Syst. And Struct. 3, pp. 7595, (1992).Google Scholar
13. DeRossi, D., Chiarelli, P., Buzzigoli, G., Domenici, C., and Lazzeri, L., Trans. Am. Soc. Artif. Intern. Organs. 32, pp. 157162, (1986).Google Scholar
14. Bar-Cohen, Y., Leary, S., Shahinpoor, M., Harrison, J., and Smith, J., Proceedings of the SPIE Conference on Electroactive Polymer Actuators, 3669, pp. 5763,Newport Beach, CA, Mar. 1999.Google Scholar
15. Oguro, K., Fujiwara, N., Asaka, K., Onishi, K., and Sewa, S., Proceedings of the SPIE Conference on Electroactive Polymer Actuators, 3669, pp. 6471,Newport Beach, CA, Mar. 1999.Google Scholar
16. Bar-Cohen, Y., Xue, T., Joffe, B., Lih, S.-S., Willis, P., Simpson, J., Smith, J., Shahinpoor, M., and Willis, P., Proceedings of SPIE, Vol. SPIE 3041, Smart Structures and Materials 1997 Symposium, Enabling Technologies: Smart Structures and Integrated Systems, Marc Regelbrugge, E. (Ed.), ISBN 0–8194–2454–4, SPIE, Bellingham, WA, pp. 697701, (1997).Google Scholar
17. Kaneto, B. K., Kaneko, M., and Takashima, W., Oyo Buturi, vol. 65, no. 1, pp. 803810, (1996).Google Scholar
18. Sia Nemat-Nasser, private communications.Google Scholar
19. Bar-Cohen, Y., Leary, S., Shahinpoor, M., Harrison, J., and Smith, J., Proceedings of the SPIE Conference on Electroactive Polymer Actuators, 3669, pp. 5156, Newport Beach, CAM, Mar. 1999.Google Scholar
20. Chiang, C, Druy, M., Gau, S., Heeger, A., Louis, E., MacDiarmid, A., Park, Y., Shirakawa, H., J. Am. Chem. Soc., 100, 1013 (1978).Google Scholar
21. Baughman, R., Shacklette, L., Elsenbaumer, R., Plitcha, E., Becht, C., Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics, and Molecular Electronics, vol. 182 of NATO ASI Series E: Applied Sciences, Kluwer, Dordrecht, Netherlands, pp. 559582 (1990).Google Scholar
22. Xie, L., Buckley, L., Josefowicz, J., Journal of Materials Science, 29, 42004204 (1994).Google Scholar
23. Madden, J., Cush, R., Kanigan, T., Brenan, C., Hunter, I., Synthetic Metals, 105, 6164 (1999).Google Scholar
24. Wang, Y., Rubner, M., Synthetic Metals, 39, 153175 (1990).Google Scholar
25. Wang, Y., Rubner, M., Buckley, L., Synthetic Metals, 41, 1103 (1991).Google Scholar
26. Wang, Y., Rubner, M., Synthetic Metals, 47, 255 (1992).Google Scholar