Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T21:14:13.337Z Has data issue: false hasContentIssue false

Raman Studies of Boron Induced Structural Changes in Amorphous Silicon-Boron Alloys

Published online by Cambridge University Press:  25 February 2011

G. Yang
Affiliation:
Center for Integrated Electronics and Physics Department, Rensselaer Polytechnic Institute, Troy, NY12180, USA
P. Bai
Affiliation:
Center for Integrated Electronics and Physics Department, Rensselaer Polytechnic Institute, Troy, NY12180, USA
B. Y. Tong
Affiliation:
Center of Chemical Physics, University of Western Ontario, London, Ontario, Canada
S. K. Wong
Affiliation:
Center of Chemical Physics, University of Western Ontario, London, Ontario, Canada
I. Hill
Affiliation:
Surface Science Laboratory, University of Western Ontario, London, Ontario, Canada
Get access

Abstract

A new amorphous Si1-x.Bx. alloy with composition of boron x ranging from 0.01 to 0.5 was produced in a low pressure chemical vapor deposition (LPCVD) system. We performed Raman scattering experiments on the a-Si1−xBx alloys and specifically monitored the Si-Si TO-like mode at around 480cm−1 and the TA-like mode at around 130cm−1. A pronounced broadening of the TO-like band as well as a decrease of the intensity ratio ITo/ITA are observed with an increase of boron concentration in the a-Si1−x Bx alloys. Based on the Raman spectra, the structural changes induced by boron incorporation in the a-Si network are discussed in the conceptual framework of the continuum random network (CRN) model. We conclude that boron incorporation enhances the structural disorder and induces topological changes in the amorphous network.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsai, C.C., Phys. Rev. B19, 2014(1979).Google Scholar
2. Chik, K.P., Du, N., John, P.K., Ou, E., Rastogi, A.C., Tam, K.H., Tong, B.Y., Wong, S.K., Wu, X.W., and Yao, J., J. Non-Cryst. Solids, 77&78, 961(1985).CrossRefGoogle Scholar
3. Armas, B., Male, G., and Salanoubat, D., J. Less-Common. Metals, 82, 245(1981).CrossRefGoogle Scholar
4. Tanaka, K., J. Non-Cryst. Solids, 97&98, 391(1987).Google Scholar
5. Maley, N. and Lannin, J.S., J. Non-Cryst. Solids, 59&60, 201(1983).CrossRefGoogle Scholar
6. Morimoto, A., Oozora, S., Kumeda, M., and Shimizu, T., Solid State Commun., 47, No.10, 773(1983).Google Scholar
7. Morimoto, A., Kumeda, M., and Shimizu, T., J. Non-Cryst. Solids, 59&60, 541(1983).Google Scholar
8. Minomura, S., Tsuji, K., Wakagi, M., Ishidate, T., Inoue, K., and Shibuya, M., J. Non-Cryst. Solids, 59&60, 541(1983).Google Scholar
9. Tong, B.Y., Wong, S.K., Yao, J., Lau, W.M., Du, N., and John, P.K., Proceeding of MRS Spring Meeting, 1987.Google Scholar
10. Ishidate, T., Inoue, K., Tsuji, K., and Minomura, S., Solid State Commun., 42, 197(1982).CrossRefGoogle Scholar
11. Lannin, J.S., Pilione, L.J., Kshirsagar, S.T., Messier, R., and Ross, R.C., Phys. Rev. B26, 3506(1983).Google Scholar
12. Tsu, R., Gonzalez-Hernandez, J., Dohler, J., and Orshinsky, S.R., Solid State Commun., 46, 79(1983).CrossRefGoogle Scholar
13. Persans, P.D., Ruppert, A.F., Chan, S.S. and Cody, G.D., Solid State Commun., 51, 203(1984).Google Scholar
14. Meek, P.E., Phil. Mag., 33, 897(1976).Google Scholar