Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-12T02:27:58.800Z Has data issue: false hasContentIssue false

Evolution of the Magnetic and Superconducting States in UCoGe With Fe and Ni Substitution

Published online by Cambridge University Press:  01 February 2011

James Jeffrey Hamlin
Affiliation:
jhamlin@physics.ucsd.edu, University of California, San Diego, Department of Physics, La Jolla, California, United States
Ryan Eagle Baumbach
Affiliation:
baumbach@physics.ucsd.edu
Kevin Huang
Affiliation:
k1huang@ucsd.edu, University of California, San Diego, Department of Physics, La Jolla, California, United States
Marc Janoschek
Affiliation:
mjanoschek@physics.ucsd.edu, University of California, San Diego, Department of Physics, La Jolla, California, United States
Noravee Kanchanavatee
Affiliation:
nkanchana@physics.ucsd.edu, University of California, San Diego, Department of Physics, La Jolla, California, United States
Diego A. Zocco
Affiliation:
dzocco@physics.ucsd.edu, University of California, San Diego, Department of Physics, La Jolla, California, United States
M. Brian Maple
Affiliation:
mbmaple@ucsd.edu, University of California, San Diego, Department of Physics, La Jolla, California, United States
Get access

Abstract

The very small number of known ferromagnetic superconductors places the study of such compounds at the frontier of superconductivity research. Recently, UCoGe has emerged as a new member of the class of materials exhibiting coexistence of ferromagnetism and superconductivity (Curie temperature TCurie = 3 K; superconducting critical temperature Ts = 0.8 K). This compound has generated much excitement, in part because it has been proposed that the superconductivity derives from spin triplet pairing mediated by ferromagnetic interactions. Therefore, a key question is how changes in the magnetic state of UCoGe affect the superconducting properties. We have carried out a comprehensive study of the UCo1-xFexGe and UCo1-xNixGe series of compounds across the entire range of composition 0 ≤ x ≤ 1. We report the results of x-ray diffraction, electrical resistivity, and magnetization measurements to elucidate the magnetic and superconducting phase diagram of the U[Fe, Co, Ni]Ge system. Substitution of either Ni or Fe into UCoGe initially results in an increase in the Curie temperature. At higher dopant concentrations (x), the ferromagnetic state crosses over to paramagnetism in UCo1-xFexGe and antiferromagnetism in UCo1-xNixGe.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sinha, S. K. Crabtree, G. W. Hinks, D. G. and Mook, H. Phys. Rev. Lett. 48, 950, 1982 Google Scholar
2 Lynn, J. W. Shirane, G. Thomlinson, W. and Shelton, R. N. Phys. Rev. Lett. 46, 368, 1981 Google Scholar
3 Maple, M. B. Baumbach, R. E. Hamlin, J. J. Zocco, D. A. Taylor, B. J. Butch, N. P. Jeffries, J. R., Weir, S. T. Sales, B. C. Mandrus, D. McGuire, M. A. Sefat, A. S. Jin, R. Vohra, Y. K., Chu, J. H. and Fisher, I. R. Physica B 404, 2924, 2009 Google Scholar
4 Saxena, S. S. Ahilan, K. Agarwal, P. Grosche, F. M. Haselwimmer, R. K. Steiner, M. Pugh, E., Walker, I. R. Julian, S. R. Monthoux, P. Lonzarich, G. G. Huxley, A. D. Sheikin, I. Braithwaite, D., and Flouquet, J. Nature (London) 406, 587, 2000 Google Scholar
5 Akazawa, T. Hidaka, H. Fujiwara, T. Kobayashi, T. C. Yamamoto, E. Haga, Y. Settai, R. and Onuki, Y.: J. Phys., Condens. Matter 16, L29, 2004 Google Scholar
6 Aoki, D. Huxley, A. D. Ressouche, E. Braithwaite, D. Flouquet, J. Brison, J. P. Lhotel, E. and Paulsen, C. Nature (London) 413, 613, 2001 Google Scholar
7 Berk, N. F. and Schrieffer, J. R. Phys. Rev. Lett. 17, 433, 1966 Google Scholar
8 Huy, N. T. Gasparini, A. Nijs, D. E. de, Huang, Y. Klaasse, J. C. P. Gortenmulder, T. Visser, de A. Hamann, A. Görlach, T., and Löhneysen, H. v., Phys. Rev. Lett. 99, 067006, 2007 Google Scholar
9 Nijs, D. E. de, Huy, N. T. and Visser, A. de, Phys. Rev. B. 77, 140506, 2008 Google Scholar
10 Huy, N. T. and Visser, A. de, Solid State Commun. 149, 703, 2009 Google Scholar
11 Pospíšil, J., Vejpravová, J. Poltierová, Diviš, M., and Sechovský, V., J. Appl. Phys. 105 07E114, 2009 Google Scholar
12 Canepa, F. Manfrinetti, P. Pani, M. and Palenzona, A. J. Alloys Comp. 234, 225, 1996 Google Scholar
13 Havela, L. Kolomiets, A. Sechovský, V., Diviš, M., Richter, M. Andreev, A. V. J. Magn. Mat. 177–181, 47, 1998 Google Scholar
14 Sechovsky, V. Havela, L. Purwanto, A. Larson, A. C. Robinson, R. A. Prokeš, K., Nakotte, H. Brück, E., Boer, F. R. de, Svoboda, P. Maletta, H. and Winkelman, M. J. Alloys Compounds 213–214, 536, 1994 Google Scholar
15 Hagmusa, I. H. Klaasse, J. C. P. Brück, E., Prokeš, K., Boer, F. R. de, and Nokotte, H. J. Appl. Phys. 81, 4157, 1997 Google Scholar
16manuscript in preparationGoogle Scholar
17 Bauer, E. D. Dickey, R. P. Zapf, V. S. and Maple, M. B. J. Phys.: Condens. Matter 13, L759, 2001 Google Scholar
18 Hassinger, E. Aoki, D. Knebel, G. and Flouquet, J. J. Phys. Soc. Japan 77, 073703, 2008 Google Scholar
19 Slooten, E. Naka, T. Gasparini, A. Huang, Y. K. and Visser, A. de, Phys. Rev. Lett. 103, 097003, 2009 Google Scholar
20 Fertig, W. A. Johnston, D. C. DeLong, E. McCallum, R. W. Maple, M. B. and Matthias, B. T., Phys. Rev. Lett. 38, 987, 1977 Google Scholar
21 Moncton, D. E. McWhan, D. B. Eckert, J. Shirane, G. and Thomlinson, W. Phys. Rev. Lett. 39, 1164, 1977 Google Scholar
22 Ishikawa, M. and Fischer, Ø., Solid State Comm. 23, 37, 1977 Google Scholar