Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T01:20:25.369Z Has data issue: false hasContentIssue false

Effects of Size and Load on Transport Properties of Nanoscale Metal-Oxide Interfaces

Published online by Cambridge University Press:  17 January 2012

Ramsey Kraya*
Affiliation:
School of Engineering and Applied Science, University of Pennsylvania
Get access

Abstract

With interface sizes rapidly reducing to the nanometer scale, it has become vital to understand how size and structure can affect transport behavior between materials in order to tune the energy barrier for various applications. Here, the fabrication of Schottky Barriers between Au nanoparticles and doped SrTiO3 materials is reported. The effect of nanoparticle size on the transport properties is clearly evident providing an excellent opportunity to compare new theory on transport characteristics at the nanoscale to classical theory to determine the method that is most effective in predicting nanoscale transport properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dupont-Ferrier, E., Mallet, P., Magaud, L., and Veuillen, J.-Y., Phys. Rev. B., 2007, 75, 205315 Google Scholar
2. Brihuega, I., Dupont-Ferrier, E., Mallet, P., Magaud, L., Pons, S, and Veuillen, J.-Y., Phys. Rev. B. 2005, 72, 205309 Google Scholar
3. Giannazzo, F., Roccaforte, F., Raineri, V., Microelec. Eng., 2007, 84, 450453 Google Scholar
4. Pomarico, A.A., Huang, D., Dickinson, J., Baski, A.A., Cingolani, R., Morkoc, H., andMolnar, R., Appl. Phys. Lett. 2003, 82, 1890 Google Scholar
5. Hugelmann, M. and Schindler, W., J. Appl. Phys., 2004, 85, 3608 Google Scholar
6. Carroll, D.L., Wagner, M., Ruhle, M., and Bonnell, D.A., Phys. Rev. B. 1997, 55, 9792 Google Scholar
7. Hasegawa, H., Sato, T., and Kaneshiro, C., J. Vac. Sci. Technol. B, 1999, 17, 18561866 Google Scholar
8. Gheber, L.A., Gorodetsky, G., and Volterra, V., Thin Solid Films, 1994, 238, 13 Google Scholar
9. Sato, T., Kaneshiro, C., Okada, H., and Hasegawa, H, J. Appl. Phys., 1999, 38, 24482452 Google Scholar
10. Smit, G.D.J.; Rogge, S.; Klaapwijk, T.M., Appl. Phys. Lett. 2002, 81, 3852.Google Scholar
11. Smit, G.D.J., Rogge, S., Klaapwijk, T.M., Appl. Phys. Lett. 2002, 80, 2568.Google Scholar
12. Lee, K., Duchamp, M., Kulik, G., Magrex, A., Won Seo, J, Jeney, S., Kulik, A.J., Forro, L., Sundaram, R.S., Brugger, J., Appl. Phys. Lett. 2007, 92, 173112.Google Scholar
13. Shimizu, T. and Okushi, H., Appl. Phys. Lett., 1995, 67, 1411 Google Scholar
14. Rhoderick, E.H. and Williams, R.H., Metal-Semiconductor Contacts, 2 nd ed. (Oxford, New York, 1988)Google Scholar
15. Kraya, R. A. and Bonnell, D. A., Ieee Transactions on Nanotechnology 9(6), 741 (2010);Google Scholar
16. Kraya, R., Kraya, L. Y., and Bonnell, D. A., Nano Letters 10(4), 1224 (2010);Google Scholar
17. Kraya, R. A., Appl. Phys. Lett. 99(5), 053107 (2011).Google Scholar