Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T12:58:20.603Z Has data issue: false hasContentIssue false

Electron Microscopy Investigation of the Cycling-Induced Phase Transformation in LiMnO2 Compounds

Published online by Cambridge University Press:  10 February 2011

H. Wang
Affiliation:
Department of Materials Science and Engineering Massachusetts Institute of Technology, Cambridge, MA 02139
Y.-I. Jang
Affiliation:
Department of Materials Science and Engineering Massachusetts Institute of Technology, Cambridge, MA 02139
Y.-M. Chiang
Affiliation:
Department of Materials Science and Engineering Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

Lithium transition metal oxides used as intercalation electrodes for rechargeable lithium batteries are widely studied in search of structural stability and improved electrochemical performance. Recent studies showed that the orthorhombic and monoclinic LiMnO2 compounds, unlike LiMn204 spinels, could be cycled on both the 4 V and 2.9 V plateaus with high and stable discharge capacity. In this study, we have performed direct high resolution observations of electrochemically cycled LiMnO2 particles in the fully discharged state. Extensive damage including local strain variation, nanodomain formation, and changes in cation ordering, has been observed. Individual particles retain overall single crystallinity despite having differing structures at the nanodomain level. While cycling causes a macroscopic transformation to spinel cation ordering, the formation of nanodomains differing in cation ordering and/or composition appears to accommodate or prevent the destructive Jahn-Teller distortion that normally occurs at high lithium concentration, thereby resulting in cycling stability.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohzuku, T., Kitagawa, M., and Hirai, T., J. Electrochem. Soc., 137, 769 (1990).Google Scholar
2. Tarascon, J. M., Wang, E., Shokoohi, F. K., McKinnon, W. R., and Colson, S., J. Electrochem. Soc., 138, 2859 (1991).Google Scholar
3. Gummow, R. J., Kock, A. de, and Thackeray, M. M., Solid State Ionics, 69, 59 (1994).Google Scholar
4. Gao, Y. and Dahn, J. R., J. Electrochem. Soc., 143, 100 (1996).Google Scholar
5. Koksbang, R., Barker, J., Shi, H., and Saïdi, M. Y., Solid State Ionics, 84, 1 (1996).Google Scholar
6. Thackeray, M. M., Kock, A de, Rossouw, M. H., Liles, D., Bittihn, R., and Hoge, D., J. Electrochem. Soc., 139, 363 (1992).Google Scholar
7. Barker, J., Koksbang, R., and SaYdi, M. Y., Solid State Ionics, 82, 143 (1995).Google Scholar
8. Gummow, R. J. and Thackeray, M. M., J. Electrochem. Soc., 141, 1178 (1994).Google Scholar
9. Reimers, J. N., Fuller, E. W., Rossen, E., and Dahn, J. R., J. Electrochem. Soc., 140, 3396 (1993).Google Scholar
10. Davidson, I. J., McMillan, R. S., Murray, J. J., and Greedan, J. E., J. Power Sources, 54, 232 (1995).Google Scholar
11. Croguennec, L., Deniard, P., and Brec, R., J. Electrochem. Soc., 144, 3323 (1997).Google Scholar
12. Chiang, Y.-M., Sadoway, D. R., Jang, Y.-I., Huang, B., and Wang, H., accepted by Electrochem. Solid-State Lett. 1998.Google Scholar
13. Jang, Y.I., Huang, B., Chiang, Y.-M., and Sadoway, D. R., Electrochem. Solid-State Lett., 1, 13 (1998).Google Scholar
14. Chiang, Y.-M., Jang, Y.-I., Wang, H., Huang, B., Sadoway, D. R., Ye, P., J. Electrochem. Soc., 145, 887 (1998).Google Scholar
15. Huang, B., Jang, Y.-I., Chiang, Y.-M. and Sadoway, D. R., J. Appl. Electrochem., in press.Google Scholar
16. Wang, H., Jang, Y.-I., Huang, B., Sadoway, D. R., and Chiang, Y.-M., J. Electrochem. Soc., in press.Google Scholar