Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T12:34:55.254Z Has data issue: false hasContentIssue false

Synthesis of nanometric TiO2 in aqueous solution by soft chemistry: obtaining of anatase, brookite and rutile with controlled shapes

Published online by Cambridge University Press:  03 September 2012

Magali Koelsch
Affiliation:
Laboratoire de Chimie de la Matière Condensée, UMR-CNRS 7574 Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris Cédex 05, France
Sophie Cassaignon
Affiliation:
Laboratoire de Chimie de la Matière Condensée, UMR-CNRS 7574 Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris Cédex 05, France
Jean-Pierre Jolivet
Affiliation:
Laboratoire de Chimie de la Matière Condensée, UMR-CNRS 7574 Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris Cédex 05, France
Get access

Abstract

Nanometric particles of titania, exhibiting anatase, brookite or rutile polymorphs, were synthesized by thermohydrolysis of TiCl4 in aqueous medium. The adjustement of physico-chemical parameters (acidity, ionic strength, anions, temperature) allows to tune the crystalline structure, the size and the morphology of the particles. Brookite results from the precipitation of titanium in HCl, HBr or HNO3 whereas anatase is formed in H2SO4 medium. Adding salts in HCl medium leads to ionic strength or complexation effect. Varying the temperature of thermohydrolysis implies modification on yield, size and morphology of the particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Braun, J. H., Baidins, A., Marganski, R.E., Prog. Org. Coat., 20, 105 (1992).Google Scholar
2. Fujishima, A., Honda, K., Nature, 238, 37 (1972).Google Scholar
3. Volz, H. G., Kämpf, G., Fitzky, G., Prog. Org. Coat., 2, 233 (1973).Google Scholar
4. Serpone, N., Pelizzeti, E., Photocatalysis: Fundamentals and applications, Wiley Interscience, New-York (1989).Google Scholar
5. O'Regan, B., Moser, J., Anderson, M., Grätzel, M., J. Phys. Chem., 94, 8720 (1990).Google Scholar
6. O'Regan, B. and Grätzel, M., Nature, 353, 737 (1991).Google Scholar
7. Krol, R., Goossens, A., Schoonman, J., J. Electrochem. Soc., 144, 1723 (1997).Google Scholar
8. Moritz, T., Reiss, J., Diesner, K., Su, D., Chemseddine, A., J. Phys. Chem. B, 101, 8052 (1997).Google Scholar
9. Charlot, G., Les méthodes de la chimie analytique, Masson, Paris (1961)Google Scholar
10. Pottier, A., Chanéac, C., Tronc, E., Mazerolles, L., Jolivet, J. P., J. Mater. Chem., 11, 1116 (2001).Google Scholar
11. Langford, J. I., Wilson, J. C., J. Appl. Cryst., 11, 102 (1978).Google Scholar
12. Pottier, A., Cassaignon, S., Chanéac, C., Villain, F., Tronc, E., Jolivet, J. P., J. Mater. Chem, 13, 877 (2003).Google Scholar
13. Vayssière, L., Chanéac, C., Tronc, E., Jolivet, J. P., J. Colloid Interface Sci., 205, 205 (2003).Google Scholar
14. Nabivanets, B. I., Kudritskaya, L. N., Russ. J. Inorg. Chem., 12, 789 (1967).Google Scholar