Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T17:41:56.377Z Has data issue: false hasContentIssue false

Generation of Silicon Nanocolumns by Nanosecond Pulsed-Excimer Laser Irradiation and Their Field Emission Properties

Published online by Cambridge University Press:  11 February 2011

Yingfeng Guan
Affiliation:
Dept. of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996
A. J. Pedraza
Affiliation:
Dept. of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996
E. D. Ellis
Affiliation:
Dept. of Electrical and Computer Eng., The University of Tennessee, Knoxville, TN 37996
L. R. Baylor
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

Laser-generated silicon microcone arrays were used as templates for the growth of nanocolumns using laser irradiation as well. The formation mechanism of the microstructure is briefly reviewed, and the origin and growth of nanocolumns are discussed. The formation mechanism of nanocolumns requires highly localized melting, which explains why they fail to form on a flat surface but can grow atop the microcones. Field emission properties from both microcolumns and nanocolumns have been measured. The high aspect ratio (height/tip radius) of nanocolumns makes them suitable for various field emission applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pedraza, A. J., Fowlkes, J. D. and Lowndes, D. H., Appl. Phys. Lett. 77, 3018 (2000).Google Scholar
Fowlkes, J. D., Pedraza, A. J. and Lowndes, D. H., Appl. Phys. Lett. 77, 1629 (2000).Google Scholar
Her, T. H., Finlay, R. J., Wu, C., Deliwala, S. and Mazur, E., Appl. Phys. Lett. 73, 1673 (1998).Google Scholar
4. Pedraza, A. J., Jesse, S., Guan, Y. F. and Fowlkes, J. D., J. Mater. Res. 16, 3599 (2001).Google Scholar
5. Chuang, T. J., J. Chem. Phys. 74, 1453 (1981).Google Scholar
6. Takai, M., Yamashita, M., Wille, H., Yura, S., Horibata, Appl. Phys. Lett. 73, 422 (1995).Google Scholar
7. Zhirnof, V. V., Givargizov, E. I. and Plekhanov, P. S., J. Vac. Sci. Technol. B 13, 418 (1995)Google Scholar
8. Carey, J.E., Zhao, L., Wu, C., Mazur, E. in CLEO 2001 Technical Digest (2001) 555–555.Google Scholar
9. Singh, R. K., Gilbert, D. R., Viatella, J., Mater. Sci. Engn. B40, 89 (1996).Google Scholar
10. Unamuno, S. D., Fogarassy, E., Appl. Sur. Sci. 36, 1 (1989).Google Scholar
11. Surek, T. and Chalmers, B., J. Cryst. Growth, 29, Issue 1, 1 (1975).Google Scholar
12. Wood, R. F., Jellison, G. E., Semiconductors and Semimetals. (Academic Press, Orlando, 1984) Vol. 23, p. 165250 Google Scholar
13. Jesse, S., Pedraza, A. J., Fowlkes, J. D. and Budai, J. D., J. Mater. Res. 17, 1002 (2002).Google Scholar
14. Pedraza, A. J., Fowlkes, J. D., Jesse, S., Mao, C. and Lowndes, D. H., Appl. Sur. Sci. 168, 251 (2000).Google Scholar
15. Pedraza, A. J., Fowlkes, J. D., Guan, Y. F. in Generation and Manipulation of Nanostructures by Pulsed-Laser Processing Proceedings, in High Power Laser Ablation IV, edited by Phipps, Claude, SPIE 4760, pp. 164174 (2002).Google Scholar
16. Pedraza, A. J., Fowlkes, J. D., Lowndes, D. H., Appl. Phys. Lett. 74, 2322 (1999).Google Scholar
17. Baylor, L. R., Merkulov, V. I., Ellis, E. D., Lowndes, D. H., J. Appl. Phys. 91, 4602 (2002).Google Scholar