Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-08T04:32:53.471Z Has data issue: false hasContentIssue false

Investigation of Green Emitting Monolithic II-VI Vertical Cavity Surface Emitting Laser

Published online by Cambridge University Press:  01 February 2011

C. Kruse
Affiliation:
Institute of Solid State Physics University of Bremen, Kusteiner Strasse NW1 28359 Bremen, Germany
G. Alexe
Affiliation:
Institute of Solid State Physics University of Bremen, Kusteiner Strasse NW1 28359 Bremen, Germany
R. Kröger
Affiliation:
Institute of Solid State Physics University of Bremen, Kusteiner Strasse NW1 28359 Bremen, Germany
M. Klude
Affiliation:
Institute of Solid State Physics University of Bremen, Kusteiner Strasse NW1 28359 Bremen, Germany
H. Heinke
Affiliation:
Institute of Solid State Physics University of Bremen, Kusteiner Strasse NW1 28359 Bremen, Germany
D. Hommel
Affiliation:
Institute of Solid State Physics University of Bremen, Kusteiner Strasse NW1 28359 Bremen, Germany
S. Ulrich
Affiliation:
Institute of Solid State Physics University of Bremen, Kusteiner Strasse NW1 28359 Bremen, Germany
P. Michler
Affiliation:
Institute of Solid State Physics University of Bremen, Kusteiner Strasse NW1 28359 Bremen, Germany
J. Gutowski
Affiliation:
Institute of Solid State Physics University of Bremen, Kusteiner Strasse NW1 28359 Bremen, Germany
Get access

Abstract

In this paper, we are investigating the growth of a ZnSe based vertical cavity surface emitting laser (VCSEL). Undoped and p-type doped distributed Bragg reflectors (DBRs) with reflectivities exceeding 99% have been grown by molecular beam epitaxy (MBE) using Zn(S)Se layers for the high refractive index material and ZnSe/MgS superlattices (SLs) for the low index material. An undoped monolithic VCSEL structure containing a ZnCdSSe quantum well (QW) emitting in the blue-green reaches a quality factor (Q-factor) of 100, which is the best value reported so far. Temperature dependent photoluminescence (PL) measurements show that the emission of the QW is effectively guided by the cavity resonance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Klude, M., Alexe, G., Kruse, C., Passow, T., Heinke, H. and Hommel, D., phys. stat sol. (b) 229, 497 (2002)Google Scholar
2. Klude, M., Passow, T., Kröger, R. and Hommel, D., Electron. Lett. 37, 1119 (2001)Google Scholar
3. Jeon, H., Kozlov, V., Kelkar, P., Nurmikko, A. V., Chu, C.-C., Grillo, D. C., Han, J., Hua, G. C., Gunshor, R. L., Appl. Phys. Lett. 67, 1668 (1995)Google Scholar
4. Tawara, T., Yoshida, H., Yogo, T., Tanaka, S., Suemune, I., J. Cryst. Growth 221, 699 (2000)Google Scholar
5. Faschinger, W., Ferreira, S., and Sitter, H., Appl. Phys. Lett. 66, 2516 (1995)Google Scholar
6. Obert, M., Wild, B., Bacher, G., Forchel, A., Andre, R., Dang, Le Si, Appl. Phys. Lett. 80, 1322 (2002)Google Scholar
7. Kruse, C., Alexe, G., Klude, M., Heinke, H., and Hommel, D., phys. stat. sol. (b) 229, 111 (2002)Google Scholar