Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-10T01:29:03.786Z Has data issue: false hasContentIssue false

Increasing the Operating Temperature of Nafion Membranes with Addition of Nanocrystalline Oxides for Direct Methanol Fuel Cells

Published online by Cambridge University Press:  11 February 2011

Vincenzo Baglio
Affiliation:
CNR-TAE Institute, via Salita S. Lucia sopra Contesse 98126 Messina, Italy University “Tor Vergata”of Rome, via della Ricerca Scientifica, 00133 Roma, Italy
Alessandra Di Blasi
Affiliation:
CNR-TAE Institute, via Salita S. Lucia sopra Contesse 98126 Messina, Italy
Antonino S. Arico'
Affiliation:
CNR-TAE Institute, via Salita S. Lucia sopra Contesse 98126 Messina, Italy
Vincenzo Antonucci
Affiliation:
CNR-TAE Institute, via Salita S. Lucia sopra Contesse 98126 Messina, Italy
Pier Luigi Antonucci
Affiliation:
University of Reggio Calabria, Località Feo Di Vito, 89100 Reggio Calabria, Italy
Francesca Serraino Fiory
Affiliation:
University “Tor Vergata”of Rome, via della Ricerca Scientifica, 00133 Roma, Italy
Silvia Licoccia
Affiliation:
University “Tor Vergata”of Rome, via della Ricerca Scientifica, 00133 Roma, Italy
Enrico Traversa
Affiliation:
University “Tor Vergata”of Rome, via della Ricerca Scientifica, 00133 Roma, Italy
Get access

Abstract

Composite Nafion membranes containing various amounts of TiO2 (3%, 5% and 10%) were prepared by using a recast procedure for application in high temperature Direct Methanol Fuel Cells (DMFCs). The electrochemical behaviour was compared to that of a membrane-electrode assembly (MEA) based on a bare recast Nafion membrane. All the MEAs containing the Nafion-titania membranes were able to operate up to 145°C, whereas the assembly equipped with the bare recast Nafion membrane showed the maximum performance at 120°C. A maximum power density of 340 mW cm-2 was achieved at 145°C with the composite membrane in the presence of oxygen feed, whereas the maximum power density with air feed was about 210 mW cm-2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hamnett, A., Catalysis Today, 39, 445 (1997)Google Scholar
2. Surampudi, S., Narayanan, S. R., Vamos, E., Frank, H., Halpert, G., La Conti, A., Kosek, J., Surya Prakash, G. K., Olah, G. A., J. Power Sources, 47, 377 (1994)Google Scholar
3. Shukla, A. K., Christensen, P. A., Hamnett, A. and Hogarth, M. P., J. Power Sources, 55, 87 (1995)Google Scholar
4. Ren, X., Wilson, M. and Gottesfeld, S., J. Electrochem. Soc., 143, L12 (1996)Google Scholar
5. Wasmus, S. and Kuver, A., J. Electroanal. Chemistry, 461, 14 (1999)Google Scholar
6. Aricò, A. S., Cretì, P., Antonucci, P. L. and Antonucci, V., Electrochem. Solid-State Lett., 1, 6 (1998)Google Scholar
7. Antonucci, P. L., Aricò, A. S., Cretì, P., Ramunni, E., Antonucci, V., Solid State Ionics, 125, 431 (1999)Google Scholar
8. Watanabe, M., Uchida, H., Seki, Y., Emori, M., Stonehart, P., J. Electrochem. Soc., 143, 3847 (1996)Google Scholar