Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T00:39:00.664Z Has data issue: false hasContentIssue false

REE partition among zircon, orthopyroxene, amphibole and garnet in a high-grade metabasic system

Published online by Cambridge University Press:  24 August 2017

ANNAMARIA FORNELLI*
Affiliation:
Earth Science and Geo-environmental Department, “Aldo Moro” Bari University via E. Orabona, 4-70125 Bari, Italy
ANTONIO LANGONE
Affiliation:
Institute of Geosciences and Earth Resources (CNR) - U.O.S. of Pavia, via Ferrata, 1-27100 Pavia, Italy
FRANCESCA MICHELETTI
Affiliation:
Earth Science and Geo-environmental Department, “Aldo Moro” Bari University via E. Orabona, 4-70125 Bari, Italy
GIUSEPPE PICCARRETA
Affiliation:
Earth Science and Geo-environmental Department, “Aldo Moro” Bari University via E. Orabona, 4-70125 Bari, Italy
*
Author for correspondence: annamaria.fornelli@uniba.it

Abstract

A mafic amphibole-bearing granulite with porphyroblastic garnet was investigated to evaluate: (1) the rare earth element (REE) partition among garnet, zircon, orthopyroxene and amphibole during the metamorphic evolution; (2) the significance of the REE distribution along lobes and bights of reabsorbed garnet rim; and (3) REE distribution coefficient values (DREE) suggestive of chemical equilibrium, assuming garnet as a reference. The results have been compared with those deriving from an intermediate granulite containing porphyroblastic garnet, without amphibole. Porphyroblastic garnet from both samples is rimmed by a continuous corona formed during post-peak decompression characterized by REE-enriched lobes and REE-poor bights. The amphiboles from corona have various REE abundances, reflecting a different dissolution rate of original garnet rim. The initial slow rate of garnet dissolution caused high REE concentration in the new garnet rim due to intra-crystalline diffusion, leading to the formation of REE-poorer amphiboles in corona. Subsequently, under an increasing geothermal gradient and fluid-present conditions, the faster dissolution of garnet determined the formation of bights and the transfer of REEs towards the corona. The timing of garnet growth and its dissolution were checked by U–Pb zircon ages. The zircons dated from 339 Ma to 303 Ma in two rock types combined with the garnet domains (core, outer core, rim) show similar distribution of patterns relative to heavy rare earth elements for zircon and garnet (DHREEzrn/grt), suggesting chemical equilibrium. Zircons dated at c. 300 Ma do not appear in equilibrium with REE-rich garnet lobes, and younger zircons (278 Ma) show a new equilibrium with REE-poor garnet bights. On this basis, the DHREEamph/grt values obtained in specific textural sites might be interpreted as suggestive of equilibrium under granulite conditions.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acquafredda, P., Fornelli, A., Paglionico, A. & Piccarreta, G. 2006. Petrological evidence for crustal thickening and extension in the Serre granulite terrane (Calabria, southern Italy). Geological Magazine 143, 119.Google Scholar
Acquafredda, P., Fornelli, A., Piccarreta, G. & Pascazio, A. 2008. Multistage dehydration–decompression in the metagabbros from the lower crustal rocks of the Serre (southern Calabria, Italy). Geological Magazine 145, 397411.Google Scholar
Amodio Morelli, L., Bonardi, G., Colonna, V., Dietrich, D., Giunta, G., Ippolito, F., Liguori, V., Lorenzoni, S., Paglionico, A., Perrone, V., Piccarreta, G., Russo, M., Scandone, P., Zanettin Lorenzoni, E. & Zuppetta, A. 1976. L'arco Calabro-Peloritano nell'orogene Appenninico-Maghrebide. Memorie Società Geologica Italiana 17, 160.Google Scholar
Buick, I. S., Hermann, J., Williams, I. S., Gibson, R. & Rubatto, D. 2006. A SHRIMP U–Pb and LA-ICP570 MS trace element study of the petrogenesis of garnet–cordierite–orthoamphibole gneisses from the Central Zone of the Limpopo Belt, South Africa. Lithos 88, 150–72.Google Scholar
Caggianelli, A., Del Moro, A., Paglionico, A., Piccarreta, G., Pinarelli, L. & Rottura, A. 1991. Lower crustal genesis connected with chemical fractionation in the continental crust of Calabria (Southern Italy). European Journal of Mineralogy 3, 159–80.Google Scholar
Caggianelli, A., Prosser, G. & Rottura, A. 2000. Thermal history vs. fabric anisotropy in granitoids emplaced at different crustal levels: an example from Calabria, southern Italy. Terra Nova 12, 109–16.Google Scholar
Chen, R. X., Zheng, Y. F. & Xie, L. 2010. Metamorphic growth and recrystallization of zircon: Distinction by simultaneous in-situ analyses of trace elements, U-Th-Pb and Lu-Hf isotopes in zircons from eclogite-facies rocks in the Sulu orogen. Lithos 114, 132–54.Google Scholar
Duchene, S., Fornelli, A., Micheletti, F. & Piccarreta, G. 2013. Sm-Nd chronology of porphyroblastic garnets from granulite facies metabasic rocks in Calabria (Southern Italy): inferences for preserved isotopic memory and resetting. Mineralogy and Petrology 107 (4), 539–51.Google Scholar
Fornelli, A., Langone, A., Micheletti, F., Pascazio, A. & Piccarreta, G. 2014. The role of trace element partitioning between garnet, zircon and orthopyroxene on the interpretation of zircon U–Pb ages: an example from high-grade basement in Calabria (Southern Italy). International Journal of Earth Sciences 103 (2), 487507.Google Scholar
Fornelli, A., Langone, A., Micheletti, F. & Piccarreta, G. 2012. Application of U-Pb dating and chemistry of zircon in the continental crust of Calabria (Southern Italy). In Zircon and Olivine: Characteristics, Types and Uses (eds Van Dijk, G., Van den Berg, V.), pp. 136. New York: Nova Science Publishers.Google Scholar
Fornelli, A., Langone, A., Micheletti, F. & Piccarreta, G. 2011. Time and duration of Variscan high-temperature metamorphic processes in the south European Variscides. Constraints from U-Pb chronology and trace–element chemistry of zircon. Mineralogy and Petrology 103, 101–22.Google Scholar
Fornelli, A., Pascazio, A. & Piccarreta, G. 2011. Diachronic and different metamorphic evolution in the fossil Variscan lower crust of Calabria. International Journal of Earth Sciences 101 (5), 1191–207.Google Scholar
Fornelli, A., Piccarreta, G., Acquafredda, P., Micheletti, F. & Paglionico, A. 2004. Geochemical fractionation in migmatitic rocks from Serre Granulitic Terrane (Calabria, southern Italy). In Special Issue 2: A showcase of the Italian research in metamorphic petrology. Periodico di Mineralogia 73, 145–57.Google Scholar
Fornelli, A., Piccarreta, G., Del Moro, A. & Acquafredda, P. 2002. Multi-stage melting in the Lower Crust of the Serre (Southern Italy). Journal of Petrology 43 (12), 2191–217.Google Scholar
Griffin, B. J., Joy, D. C. & Michael, J. R. 2010. A comparison of a luminescence-based VPSE and an electron-based GSED for SE and CL imaging in variable pressure SEM with conventional SE imaging. Microscope Microanalyses 16 (Suppl. 2), 624–5.Google Scholar
Harley, S. L. & Kelly, N. M. 2007. The impact of zircon-garnet REE distribution data on the interpretation of zircon U–Pb ages in complex high-grade terrains: an example from the Rauer Islands, East Antartica. Chemical Geology 241, 6287.Google Scholar
Harley, S. L., Kinny, P. D., Snape, I. & Black, L. P. 2001. Zircon chemistry and the definition of events in Archaean granulite terrains. In Extended Abstracts of 4th International Archaean Symposium (eds Cassidy, K. F., Dunphy, J. M. and van Kranendonk, M. J.), pp. 511–3. Canberra: AGSO Geoscience Australia Record 2001/37.Google Scholar
Hermann, J. & Rubatto, D. 2003. Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust. Journal of Metamorphic Geology 21 (9), 833–52.Google Scholar
Hokada, T. & Harley, S. L. 2004. Zircon growth in UHT leucosome: constraints from zircon-garnet rare earth elements (REE) relations in Napier Complex, East Antarctica. Journal of Mineralogical and Petrological Sciences, 99 (4), 180–90.Google Scholar
Horn, I., Rudnik, R. L. & McDonough, W. F. 2000. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: application to U–Pb geochronology. Chemical Geology 164, 281301.Google Scholar
Horstwood, M. S. A., Foster, G. L., Parrish, R. R., Noble, S. R. & Nowell, G. M. 2003. Common-Pb corrected in situ U–Pb accessory mineral geochronology by LA–MC–ICP–MS. Journal of Analytical Atomic Spectrometry 18, 837–46.Google Scholar
Kelly, N. M. & Harley, S. L. 2005. An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antarctica. Contributions to Mineralogy and Petrology 149 (1), 5784.Google Scholar
Ketchum, J. W. F., Jackson, S. E., Culshaw, N. G. & Barr, S. M. 2001. Depositional and tectonic setting of the Paleo-proterozoic Lower Aillik Group, Makkovik Province, Canada: evolution of a passive margin-foredeep sequence based on petrochemistry and U–Pb (TIMS and LAM-ICP-MS) geochronology. Precambrian Research 105, 331–56.Google Scholar
Kretz, R. 1983. Symbols for rock-forming minerals. American Mineralogist 68, 277–9.Google Scholar
Ludwig, K. 2003. User's Manual for a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication no. 4, 53 pp.Google Scholar
Maccarrone, E., Paglionico, A., Piccarreta, G. & Rottura, A. 1983. Granulite–amphibolite facies metasediments from the Serre (Calabria, Southern Italy): their protoliths and the processes controlling their chemistry. Lithos 16, 95111.Google Scholar
McDonough, W. F. & Sun, S. S. 1995. The composition of the Earth. Chemical Geology 120, 223–53.Google Scholar
Micheletti, F., Barbey, P., Fornelli, A., Piccarreta, G. & Deloule, E. 2007. Latest Precambrian to Early Cambrian U-Pb zircon ages of augen gneisses from Calabria (Italy), with inference to the Alboran microplate in the evolution of the peri-Gondwana terranes. International Journal of Earth Sciences 96 (5), 843–60.Google Scholar
Micheletti, F., Fornelli, A., Piccarreta, G., Barbey, P. & Tiepolo, M. 2008. The basement of Calabria (southern Italy) within the context of the Southern European Variscides: LA-ICPMS and SIMS U-Pb zircon study. Lithos 104, 111.Google Scholar
Paglionico, A. & Piccarreta, G. 1976. Le Unità del Fiume Pomo e di Castagna nelle Serre Settentrionali (Calabria). Bollettino della Società Geologica Italiana 95, 2737.Google Scholar
Paglionico, A. & Piccarreta, G. 1978. History and petrology of a fragment of the deep crust in the Serre (Calabria, Italy). Neues Jahrbuch für Mineralogie-Abhandlungen (Journal of Mineralogy and Geochemistry) 9, 385–96.Google Scholar
Rubatto, D. 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology 184, 123–38.Google Scholar
Rubatto, D. & Hermann, J. 2007. Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology 241, 6287.Google Scholar
Schenk, V. 1980. U-Pb and Rb-Sr radiometric dates and their correlation with metamorphic events in the granulite-facies basement of the Serre, southern Calabria (Italy). Contributions to Mineralogy and Petrology 73, 2338.Google Scholar
Schenk, V. 1984. Petrology of felsic granulites, metapelites, metabasics, ultramafics, and metacarbonates from Southern Calabria (Italy): prograde metamorphism, uplift and cooling of a former lower crust. Journal of Petrology 25, 255–98.Google Scholar
Schenk, V. 1989. P-T-t path of the lower crust in the Hercynian fold belt of southern Calabria. In Evolution of Metamorphic Belts (eds Daly, J. S., Cliff, R. A. & Yardley, B. W. D.), pp. 337–42. Geological Society of London, Special Publication no. 43.Google Scholar
Skublov, S. & Drugova, G. 2003. Patterns of trace-element distribution in calcic amphiboles as a function of metamorphic grade. The Canadian Mineralogist 41 (2), 383–92.Google Scholar
Storkey, A. C., Hermann, J., Hand, M. & Buick, I. S. 2005. Using in situ trace-element determinations to monitor partial-melting processes in metabasites, Journal of Petrology 46 (6), 1283–308.Google Scholar
Tajcmanova, L., Podladchikov, Y., Powell, R., Moulas, E., Vrijmoed, J. C. & Connolly, J. A. D. 2014. Grain-scale pressure variations and chemical equilibrium in high-grade metamorphic rocks. Journal of Metamorphic Geology 32, 195207.Google Scholar
Taylor, R. J. M., Harley, S. L., Hinton, R. W., Elphick, S., Clark, C. & Kelly, N. M. 2015. Experimental determination of REE partition coefficient between zircon, garnet and melt: a key to understanding high-T crustal processes. Journal of Metamorphic Geology 33, 231–48.Google Scholar
Tiepolo, M. 2003. In situ Pb geochronology of zircon with laser ablation inductively coupled plasma-sector field mass spectrometry. Chemical Geology 199, 159–77.Google Scholar
Tiepolo, M., Bottazzi, P., Palenzona, M. & Vannucci, R. 2002. A laser probe coupled with ICP–double-focusing sector–field mass spectrometer for in situ analysis of geological samples and U–Pb dating of zircon. Canadian Mineralogist 41, 259–72.Google Scholar
Trail, D., Watson, E. B. & Tailby, N. D. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochimica et Cosmochimica Acta, 97, 7087.Google Scholar
van Achterbergh, E., Ryan, C., Jackson, S. & Griffin, W. 2001. Data reduction software for LAICPMS. In Laser Ablation ICPMS in the Earth Science Principles and Application (ed. Sylvester, P.), pp. 239–43. Mineralogical Association of Canada, Short Course no. 29.Google Scholar
Whitehouse, M. J. & Platt, J. P. 2003. Dating high-grade metamorphism: constraints from rare-earth 675 elements in zircon and garnet. Contribution to Mineralogy and Petrology 145, 6174.Google Scholar
Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J. C. & Spiegel, W. 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace elements and REE analyses. Geostandards Newsletter 19, 123.Google Scholar
Xia, X. Q., Zheng, Y. F., Yuan, H. & Wu, F. Y. 2009. Contrasting Lu–Hf and U–Th–Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranites in the Dabie orogen, China. Lithos 112, 477–96.Google Scholar
Zhang, S. B., Zheng, Y. F. & Zhao, Z. F. 2010. Temperature effect over garnet effect on uptake of trace elements in zircon of TTG-like rocks. Chemical Geology 274, 108–25.Google Scholar
Zhou, L. G., Xia, X. Q., Zheng, Y. F. & Chen, R. X. 2011. Multistage growth of garnet in ultrahigh-pressure eclogite during continental collision in the Dabie orogen: constrained by trace elements and U-Pb ages. Lithos 127, 101–27.Google Scholar
Zong, K., Liu, Y., Gao, C., Hu, Z., Gao, S. & Gong, H. 2010. In situ U-Pb dating and trace element analysis of zircons in thin sections of eclogite: refining constraints on the ultra high-pressure metamorphism of the Sulu terrane, China. Chemical Geology 269, 237–51.Google Scholar
Supplementary material: File

Fornelli et al supplementary material

Fornelli et al supplementary material 1

Download Fornelli et al supplementary material(File)
File 54.9 KB
Supplementary material: File

Fornelli et al supplementary material

Fornelli et al supplementary material 2

Download Fornelli et al supplementary material(File)
File 13.8 KB