Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T08:15:15.437Z Has data issue: false hasContentIssue false

Low Temperature B Activation in SOI Using Optimised Vacancy Engineering Implants

Published online by Cambridge University Press:  01 February 2011

A.J. Smith
Affiliation:
Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH
B. Colombeau
Affiliation:
Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH
N. Bennett
Affiliation:
Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH
R. Gwilliam
Affiliation:
Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH
N. Cowern
Affiliation:
Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH
B. Sealy
Affiliation:
Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH
Get access

Abstract

In this study 300keV and 1MeV Si vacancy engineering implants have been used to optimise the activation of a 2keV 1×1015cm-2 B implant into SOI. Although the two implants generate a similar areal density of excess vacancies in the SOI top layer, Hall Effect measurements show that low temperature activation is possible to a greater level with the 300keV Si co-implant than with the 1MeV implant. Hall and SIMS data are consistent with a high level of activation of the B at 700°C, with no significant diffusion at the metallurgical junction depth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lindsey, R., .Pawlak, B, Stolk, P., and Maex, K., Mat.Res.Soc.Symp.Proc. 717, C2 (2002)Google Scholar
2 Pawlak, B., Surdeanu, R., Colombeaeu, B., Smith, A., Cowern, N., Lindsay, R., Vandervorst, W., Brijis, B., Richard, O., Cristiano, F.. App. Phys. Lett. 48, 2055 (2004)Google Scholar
3 Winterbon, K., Rad.Eff. 46, 181 (1980)Google Scholar
4 Nejim, A. and Sealy, B., Semicond.Sci.Tech. 18, 839 (2003).Google Scholar
5 Venezia, V., Haynes, T., Agarwal, A., Pelaz, L., Gossmann, H.-J, Jacobson, D., and Eaglesham, D., Appl.Phys.Lett. 74, 9, 1299 (1999).Google Scholar
6 Shao, L., lu, X., Wang, X., Rusakova, I., Liu, J., and Chu, W., Appl.Phys.Lett. 78, 16, 2321 (2001).Google Scholar
7 Kalyanaraman, R., Venezia, V., Pelaz, L., Haynes, T., Gossmann, H.-J, and Rafferty, C., Appl.Phys.Lett. 82, 2, 215 (2003).Google Scholar
8 Shao, L., Zhang, J., Chen, J., Tang, D., Thomson, P., Patel, S., Wang, X., Chen, H., Liu, J., and Chu, W., Appl.Phys.Lett. 84, 3325 (2004).Google Scholar
9 Smith, A.J., Colombeau, B., Gwilliam, R., Collart, E., Cowern, N., and Sealy, B., Mat.Res.Soc.Symp.Proc. 810, C3.8 (2004).Google Scholar
10 Cowern, N., Cacciato, A., Custer, J., Saris, F., Vandervorst, W., Appl. Phys. Lett. 68, 1150 (1996)Google Scholar