Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T01:28:33.717Z Has data issue: false hasContentIssue false

A Study of Self-Reinforcement Phenomenon in Silicon Nitride by Monte-Carlo Simulation

Published online by Cambridge University Press:  10 February 2011

Y. Okamoto
Affiliation:
Synergy Ceramics Research Laboratory, Fine Ceramics Research Association 2-4-1, Mutsuno, Atsuta-ku, Nagoya-shi, Aichi-ken 456-8587, Japan
N. Hirosaki
Affiliation:
Synergy Ceramics Research Laboratory, Fine Ceramics Research Association 2-4-1, Mutsuno, Atsuta-ku, Nagoya-shi, Aichi-ken 456-8587, Japan
H. Matsubara
Affiliation:
Synergy Ceramics Research Laboratory, Fine Ceramics Research Association 2-4-1, Mutsuno, Atsuta-ku, Nagoya-shi, Aichi-ken 456-8587, Japan
Get access

Abstract

A grain growth model based on the results of Monte-Carlo simulations is proposed for silicon nitride. The model was derived from the Potts model; in addition, principal characteristics of silicon nitride such as presence of liquid phase and anisotropy of grain growth were introduced. Employing this model, microstructure development of silicon nitride was investigated.

Under certain simulation conditions, several grains grew in preference to other grains, and consequently, a self-reinforced microstructure was produced similar to that of actual silicon nitride. In particular, liquid phase fraction was found to be dominant factor affecting microstructure development.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wittmer, D. E., Doshi, D. and Paulson, T. E., in Proceedings of 4th International Symposium on Ceramic Material and Components for Engines, Elsevier Science Publishers, (1992) pp. 594602.Google Scholar
[2] Pyzik, A. J. and Beaman, D. R., J. Am. Ceram. Soc., 76 [11], 2737–44 (1994)Google Scholar
[3] Anderson, M. P., Srolovitz, D. J., Grest, G. S. and Sahni, P. S., Acta metall., 32[5], 783–91 (1984).Google Scholar
[4] Srolovitz, D. J., Anderson, M. P., Sahni, P. S. and Grest, G. S., Acta metall., 32[5], 793802 (1984).Google Scholar
[5] Grest, G. S., Anderson, M. P., Srolovitz, D. J. and Rollett, A. D., Scripta Metall. et Mater., 24 [4], 661–65 (1990).Google Scholar
[6] Rollett, A. D., Srolovitz, D. J. and Anderson, M. P., Acta Metall. Mater., 37 [4], 1227–40 (1989).Google Scholar
[7] Kunaver, U. and Kolar, D., Acta Metall. Mater., 41 [8], 2255–63 (1993).Google Scholar
[8] Srolovitz, D. J., Grest, G. S. and Anderson, M. P., Acta metall, 34[9], 1833–45 (1986).Google Scholar
[9] Srolovitz, D. J., Grest, G. S., Anderson, M. P. and Rollet, A. D., Acta metall, 36[8], 2115–28 (1988).Google Scholar
[10] Hassold, G. N., Chen, I. -W. and Srolovitz, D. J., J. Am. Ceram. Soc., 73[10], 2857–64 (1990).Google Scholar
[11] Chen, I -W., Hassold, G. N. and Srolovitz, D. J., J. Am. Ceram. Soc., 73[10], 2865–72 (1990).Google Scholar
[12] Matsubara, H. and Brook, R. J., in “Mass and Charge Transport in Ceramics”, Ed. by Koumoto, K., Shepard, L. M. and Matsubara, H., Ceramic Transactions vol. 71, The American Ceramic Society, (1996) pp. 403–17.Google Scholar
[13] Tajika, M., Matsubara, H. and Rafaniello, W., J. Ceram. Soc. Japan, 105[11], 928–33 (1997).Google Scholar
[14] Hwang, C. -J. and Tien, T. -Y., Materials Science Forum vol. 47, Trans Tech Publications, (1989) pp. 84109.Google Scholar