Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-06T11:18:58.003Z Has data issue: false hasContentIssue false

Analyzing Open-Voltage of Double-Layer Organic Solar Cells Using Optical Electric-Field-Induced Second-Harmonic Generation

Published online by Cambridge University Press:  25 April 2012

Dai Taguchi
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 S3-33 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan.
Xiangyu Chen
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 S3-33 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan.
Takaaki Manaka
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 S3-33 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan.
Mitsumasa Iwamoto
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 S3-33 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan.
Get access

Abstract

By using electric-field-induced second-harmonic generation (EFISHG) measurement, we analyzed photovoltaic effect of two-layer solar cells (indium zinc oxide/pentacene/C60/Al). Results evidently showed that negative and excessive charges Qs accumulated at the two-layer interface under illumination, e.g., Qs =-1.7×10-9 C/cm2 at 0.05 mW/cm2 and –3.6×10-9 C/cm2 at 0.5 mW/cm2, while a short-circuit current flowed. The open-circuit voltage changed in accordance with accumulation charge Qs, and finally saturated. Modeling that accumulated negative charge is a source of space charge field and directly effects on the electrostatic energy stored in OSCs, dependence of the open voltage on the accumulated charge Qs was explained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brabec, C., Dyakonov, V., Scherf, U. ed. Organic Photovoltaics (Wiley-VCH, Weinheim, 2008).Google Scholar
2. Green, M. A., Emery, K., Hishikawa, Y., and Warta, W., Prog. Photovolt., 19, 84 (2011).Google Scholar
3. Manaka, T., Lim, E., Tamura, R., Iwamoto, M., Nature Photon., 1, 581 (2007).Google Scholar
4. Ohshima, Y., Lim, E., Manaka, T., Iwamoto, M., and Sirringhause, H., J. Appl. Phys., 110, 013715 (2009).Google Scholar
5. Taguchi, D., Weis, M., Manaka, T., and Iwamoto, M., Appl. Phys. Lett., 95, 263310 (2009).Google Scholar
6. Taguchi, D., Inoue, S., Zhang, L., Li, J., Weis, M., Manaka, T., and Iwamoto, M., J. Phys. Chem. Lett., 1, 803 (2010).Google Scholar
7. Taguchi, D., Zhang, L., Li, J., Weis, M., Manaka, T., and Iwamoto, M., J. Phys. Chem. C, 114, 15136 (2010).Google Scholar
8. Zhang, L., Taguchi, D., Manaka, T., and Iwamoto, M., J. Appl. Phys., 110, 033715 (2011).Google Scholar
9. Zhang, L., Taguchi, D., Manaka, T., and Iwamoto, M., Appl. Phys. Lett., 99, 083301 (2011).Google Scholar
10. Li, J., Taguchi, D., OuYang, W., Manaka, T., and Iwamoto, M., Appl. Phys. Lett., 99, 063302 (2011).Google Scholar
11. Taguchi, D., Shino, T., Zhang, L., Li, J., Weis, M., Manaka, T., and Iwamoto, M., Appl. Phys. Express, 4, 021602 (2011).Google Scholar
12. Taguchi, D., Shino, T., Zhang, L., Li, J., Weis, M., Manaka, T., and Iwamoto, M., Appl. Phys. Lett., 98, 133507 (2011).Google Scholar
13. Chen, X., Taguchi, D., Lee, K., Manaka, T., and Iwamoto, M., Chem. Phys. Lett., 511, 491 (2011).Google Scholar
14. Zhang, L., Taguchi, D., Li, J., Manaka, T., and Iwamoto, M., J. Appl. Phys., 108, 093707 (2010).Google Scholar
15. Sze, S. M., Physics of Semiconductor Devices, 2nd ed. Chapter 13 (Wiley, New York, 1981).Google Scholar