Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T08:17:13.930Z Has data issue: false hasContentIssue false

Alpha ganglion cells of the rabbit retina lose antagonistic surround responses under dark adaptation

Published online by Cambridge University Press:  02 June 2009

Jay F. Muller
Affiliation:
Eye Foundation Hospital, Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
Ramon F. Dacheux
Affiliation:
Eye Foundation Hospital, Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama

Abstract

Alpha ganglion cells from the midperiphery of the rabbit retina were recorded intracellularly under visual control, in a superfused everted eyecup, and labeled with HRP. Their physiology and large somata with broad dendritic arbors identified them as uniform populations of ON- and OFF-center alpha ganglion cells, which typically displayed transient/sustained light-evoked responses. When dark adapted, the light-evoked responses from both ON- and OFF-center alpha ganglion cells were more sustained than those generally seen under light-adapted conditions. During dark-adapted (scotopic) conditions, stimulation with dim full-field illumination and small spots, either positioned over the soma or displaced 450 μm from the soma, all elicited pure center responses. After light adaptation (photopic conditions), the displaced small spots that previously evoked center responses elicited antagonistic surround responses from both ON- and OFF-center cells. Thus, as originally described in cat retina (Barlow et al., 1957), the receptive-field organization of ganglion cells changed between dark and light adaptation, and an absence or presence of surround antagonism was indicative of scotopic versus photopic states.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amthor, F.R., Takahashi, E.S. & Oyster, C.W. (1989). Morphologies of rabbit retinal ganglion cells with concentric receptive fields. Journal of Comparative Neurology 280, 7296.CrossRefGoogle ScholarPubMed
Barlow, H.B., Fitzhugh, R. & Kuffler, S.W. (1957). Change of organization in the receptive fields of the cat's retina during dark adaptation. Journal of Physiology 137, 338354.CrossRefGoogle ScholarPubMed
Barlow, H.B. & Levick, W.R. (1976). Threshold setting by the surround of cat retinal ganglion cells. Journal of Physiology 259, 737757.CrossRefGoogle ScholarPubMed
Bloomfield, S.A. (1992). Relationship between receptive and dendritic field size of amacrine cells in the rabbit retina. Journal of Neurophysiology 68, 711725.CrossRefGoogle ScholarPubMed
Boycott, B.B. & Wässle, H. (1974). The morphological types of ganglion cells of the domestic cat's retina. Journal of Physiology 240, 397419.CrossRefGoogle ScholarPubMed
Caldwell, J.H. & Daw, N.W. (1978). New properties of rabbit retinal ganglion cells. Journal of Physiology 276, 257276.CrossRefGoogle ScholarPubMed
Chun, M.-H., Han, S.-H., Chung, J.-W. & Wässle, H. (1993). Electron microscopic analysis of the rod pathway of the rat retina. Journal of Comparative Neurology 332, 421432.CrossRefGoogle ScholarPubMed
Cleland, B.G., Levick, W.R. & Sanderson, K.J. (1973). Properties of sustained and transient ganglion cells in the cat retina. Journal of Physiology 228, 649680.CrossRefGoogle ScholarPubMed
Dacheux, R.F. & Raviola, E. (1986). The rod pathway in the rabbit retina: A depolarizing bipolar and amacrine cell. Journal of Neuroscience 6, 331345.Google Scholar
Dacheux, R.F. & Raviola, E. (1995). Light responses from one type of ON-OFF amacrine cells in the rabbit retina. Journal of Neurophysiology 74, 24602468.CrossRefGoogle ScholarPubMed
Daw, N.W., Jensen, R.J. & Brunken, W.J. (1990). Rod pathways in mammalian retinae. Trends in Neuroscience 13, 110115.Google Scholar
Enroth-Cugell, C. & Robson, J.G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology 187, 517552.CrossRefGoogle ScholarPubMed
Enroth-Cugell, C. & Lennie, P. (1975). The control of retinal ganglion cell discharge by receptive field surrounds. Journal of Physiology 247, 551578.Google Scholar
Freed, M.A. & Sterling, P. (1988). The on-alpha ganglion cell of the cat retina and its presynaptic cell types. Journal of Neuroscience 8, 23032320.CrossRefGoogle ScholarPubMed
Fukuda, Y., Hsiao, C.-F., Watanabe, M. & Ito, H. (1984). Morphological correlates of physiologically identified Y-, X-, and W-cells in the cat retina. Journal of Neurophysiology 52, 9991013.CrossRefGoogle Scholar
Gillette, M.A. & Dacheux, R.F. (1995). GABA and glycine activated currents in the rod bipolar cell of the rabbit retina. Journal of Neurophysiology 74, 856875.CrossRefGoogle ScholarPubMed
Hamasaki, D.I., Tasaki, K. & Suzuki, H. (1979). Properties of X- and Y-cells in the rabbit retina. Japanese Journal of Physiology 29, 445457.Google Scholar
Jakiela, H.G., Enroth-Cugell, C. & Shapley, R. (1976). Adaptation and dynamics in X-cells and Y-cells of the cat retina. Experimental Brain Research 24, 335342.Google Scholar
Jensen, R.J. (1991). Involvement of glycinergic neurons in the diminished surround activity of ganglion cells in the dark-adapted rabbit retina. Visual Neuroscience 6, 4353.CrossRefGoogle ScholarPubMed
Jensen, R.J. (1992). Effects of the dopamine antagonist (+)-SCH 23390 on intracellularly recorded responses of ganglion cells in the rabbit retina. Visual Neuroscience 8, 463467.Google Scholar
Kolb, H. & Famiclietti, E.V. (1974). Rod and cone pathways in the inner plexiform layer of the cat retina. Science 186, 4749.CrossRefGoogle ScholarPubMed
Kolb, H. & Nelson, R. (1993). OFF-alpha and OFF-beta ganglion cells in the cat retina: II. Neural circuitry as revealed by electron microscopy of HRP stains. Journal of Comparative Neurology 329, 85110.CrossRefGoogle ScholarPubMed
Lakos, S. & Basbaum, A.I. (1986). Benzidine dihydrochloride as a chromogen for single- and double-label light and electron microscope immunocytochemical studies. Journal of Histochemistry and Cytochemistry 34, 10471056.Google Scholar
Maffei, L., Fiorentini, A. & Cervetto, L. (1971). Homeostasis in retinal receptive fields. Journal of Neurophysiology 34, 579587.Google Scholar
Mangel, S.C. (1991). Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina. Journal of Physiology 442, 211234.CrossRefGoogle Scholar
Nelson, R., Kolb, H. & Freed, M.A. (1993). OFF-alpha and OFF-beta ganglion cells in Cat retina. I: Intracellular electrophysiology and HRP stains. Journal of Comparative Neurology 329, 6884.Google Scholar
Peichl, L., Buhl, E.H. & Boycott, B.B. (1987 a). Alpha ganglion cells in the rabbit retina. Journal of Comparative Neurology 263, 2541.Google Scholar
Peichl, L., Ott, H. & Boycott, B.B. (1987 b). Alpha ganglion cells in mammalian retinae. Proceedings of the Royal Society B (London) 231, 169197.Google ScholarPubMed
Peichl, L. & Wässle, H. (1981). Morphological identification of on- and off-centre brisk transient (Y) cells in the cat retina. Proceedings of the Royal Society B (London) 212, 139156.Google Scholar
Peichl, L. & Wässle, H. (1983). The structural correlate of the receptive field centre of a ganglion cells in the cat retina. Journal of Physiology 341, 309324.CrossRefGoogle ScholarPubMed
Raviola, E. & Dacheux, R.F. (1987). The excitatory dyad synapse in rabbit retina. Proceedings of the National Academy of Sciences of the U.S.A. 84, 73247328.CrossRefGoogle ScholarPubMed
Rodieck, R.W. & Stone, J. (1965). Analysis of receptive fields of cat retinal ganglion cells. Journal of Neurophysiology 28, 833849.CrossRefGoogle ScholarPubMed
Saito, H.-A. (1983 a). Morphology of physiologically identified X-, Y-, and W-type retinal ganglion cells of the cat. Journal of Comparative Neurology 221, 279288.CrossRefGoogle Scholar
Saito, H.-A. (1983 b). Pharmacological and morphological differences between X- and Y-type ganglion cells in the cat's retina. Vision Research 23, 12991308.Google Scholar
Sandell, J.H., Masland, R.H., Raviola, E. & Dacheux, R.F. (1989). Connections of indoleamine-accumulating cells in the rabbit retina. Journal of Comparative Neurology 283, 303313.CrossRefGoogle ScholarPubMed
Stanford, L.R. & Sherman, M. (1984). Structure/function relationships of retinal ganglion cells in the cat. Brain Research 297, 381386.CrossRefGoogle ScholarPubMed
Strettoi, E., Dacheux, R.F. & Raviola, E. (1990). Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina. Journal Comparative Neurology 295, 449466.CrossRefGoogle ScholarPubMed
Strettoi, E., Raviola, E. & Dacheux, R.F. (1992). Synaptic connections of the narrow-field bistratified amacrine cell (AII) in the rabbit retina. Journal of Comparative Neurology 325, 152168.Google Scholar
Wässle, H., Grünert, U., Chun, M.-H. & Boycott, B.B. (1995). The rod pathway of the macaque monkey retina: Identification of AII-amacrine cells with antibodies against calretinin. Journal of Comparative Neurology 361, 537551.CrossRefGoogle ScholarPubMed
Yoon, M. (1972). Influence of adaptation level on response pattern and sensitivity of ganglion cells in the cat's retina. Journal of Physiology 221, 93104.CrossRefGoogle ScholarPubMed