Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-04T13:59:52.791Z Has data issue: false hasContentIssue false

Laser-Induced Chemical Vapor Deposition of High Purity Aluminum

Published online by Cambridge University Press:  25 February 2011

Thomas H. Baum
Affiliation:
IBM Almaden Research Center, San Jose, California 95120–6099
Carl E. Larson
Affiliation:
IBM Almaden Research Center, San Jose, California 95120–6099
Robert L. Jackson
Affiliation:
IBM Almaden Research Center, San Jose, California 95120–6099
Get access

Abstract

The laser-induced chemical vapor deposition (LCVD) of aluminum metal has been achieved via the pyrolytic decomposition of trimethylamine aluminum hydride (TMAAH). This material is a volatile, crystalline solid which is non-pyrophoric, in contrast to many other aluminum precursors. Laser-driven pyrolysis of TMAAH enables the selective deposition of high purity, highly conducting aluminum deposits. The volatility of the TMAAH precursor is directly responsible for the rapid rates of aluminum deposition and permits rapid scan velocities to be utilized. The relationship between the chemical structure of TMAAH and the high purity of the aluminum deposits is described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baum, T. H., J. Electrochem. Soc., 134, 2616 (1987); T. H. Baum, Mat. Res. Soc. Symp. Proc., 75, 141 (1987).CrossRefGoogle Scholar
2. Aylett, M. R., Chemtronics, 1, 146 (1986).Google Scholar
3. Baum, T. H. and Jones, C. R., Appl. Phys. Lett., 47, 538 (1985); T. T. Kodas, T. H. Baum and P. B. Comita, J. Appl. Phys., 62, 281 (1987).CrossRefGoogle Scholar
4. Shedd, G. M., Dubner, A. D., Lezec, H. and Melngailis, J., Appl. Phys. Lett., 49, 1584 (1986).Google Scholar
5. Koops, H. W. P., Weiel, R., Kern, D. P. and Baum, T. H., J. Vac. Sci. Tech. B 6, 477 (1988).Google Scholar
6. Gozum, J. E., Pollina, D. M., Jensen, J. A. and Girolami, G. S., J. Amer. Chem. Soc., 110, 2688 (1988); G. T. Stauf and P. A. Dowben, Thin Solid Films, 156, L31 (1988).Google Scholar
7. Bhat, R., Koza, M. A., Chang, C. C., Schwarz, S. A. and Harris, T. D., J. Crystal Growth, 77, 7 (1986).Google Scholar
8. Ruff, J. K. and Hawthorne, M. F., J. Amer. Chem. Soc., 82, 2141 (1960).Google Scholar
9. Heitsch, C. W., Nature, 195, 995 (1962).Google Scholar
10. Kodas, T. T., Baum, T. H. and Comita, P. B., J. Appl. Phys., 61, 2749 (1987).Google Scholar
11. Ziegler, K., Nagel, K. and Pfohl, W., Justus Liebigs Ann. Chem., 629, 210 (1960); A. Malazgirt and J. W. Evans, J. Metal. Trans. B, 11B, 225 (1980).CrossRefGoogle Scholar
12. Blonder, G. E., Fleming, C. G. and Higashi, G. S., Appl. Phys. Lett., 50, 766 (1987); G. S. Higashi, L. J. Rothberg and C. G. Fleming, Chem. Phys. Lett., 115, 2771 (1985).Google Scholar
13. Bent, B. E., Nuzzo, R. G. and Bubois, L. H., Mat. Res. Symp. Proc., 101, 177 (1987).Google Scholar
14. Zhang, Y. and Stuke, M., Mat. Res. Soc. Symp. Proc., 101, 70 (1987).Google Scholar
15. Cacouris, T., Scelsi, G., Shaw, P., Scarmozzino, R., Osgood, R. M. and Krachnevak, R. R., Appl. Phys. Lett., 52, 1865 (1988).Google Scholar