Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T05:25:10.024Z Has data issue: false hasContentIssue false

Compositional Control of Ferroelectric Domain Structures in Eteroepitaxial PLZT Thin Films

Published online by Cambridge University Press:  10 February 2011

K. S. Lee
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 790-784, Korea
Y. M. Kang
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 790-784, Korea
S. Baik
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 790-784, Korea
Get access

Abstract

The mechanism and control of ferroelectric domain formation in heteroepitaxial (Pb1−xLax)(ZryTi1-y)O3 (PLZT) thin films grown on MgO(001) substrates have been investigated as a function of composition and temperature. Pulsed laser deposition and RF magnetron sputtering techniques were used and optimized to fabricate epitaxial thin films with varying La and/or Zr concentrations. Periodic 9° domain structures were developed when the film transformed from the cubic phase to the tetragonal phase during cooling after deposition. As a result of the tetragonality of the films, the domain formation induced slightly tilted twin structures. All films were grown highly c axis oriented and the degree of c axis orientation was improved with increasing La or Zr concentration. Experimental observations of the 90° domain evolution in films have been carried out in-situ and ex-situ using conventional and synchrotron X-ray diffraction and demonstrated that the most important parameter affecting the domain structure and its abundance is the transformation strain at the Curie temperature, which can be varied systematically by changing the concentration of La and/or Zr in the PLZT system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Roitburd, A. L., Physica Status Solidi A 37, p. 329 (1976).Google Scholar
2. Dolan, G. J., Chandrasekhar, G. V., Dinger, T. R., Field, C. and Holtzberg, F., Phys. Rev. Lett. 62, p. 827(1989).Google Scholar
3. Pande, C. S., Singh, A. K., Toth, L., Gubser, D. U. and Wolf, S., Phys. Rev. B 36, p. 10 (1987).Google Scholar
4. Stemmer, S., Streiffer, S. K., Hsu, W. Y., Ernst, F., Raj, R. and Ruhle, M., J. Mater. Res. 10, p. 791 (1995).Google Scholar
5. de Keijser, M., Cillessen, J. F. M., Janssen, R. B. F., de Veirman, A. E. M. and de Leeuw, D. M., J. Appl. Phys. 79, p. 393 (1996).Google Scholar
6. Kang, Y. M., Ku, J. K. and Baik, S., J. Appl. Phys. 78, p. 2601 (1995).Google Scholar
7. Foster, C. M., Li, Z., Buckett, M.. You, H. and Merkle, K. L., J. Appl. Phys. 78, p. 2607 (1995).Google Scholar
8. Kwak, B. S., Erbil, A., Budai, J. D., Chisholm, M. F., Boatner, L. A. and Wilkens, B. J., Phys. Rev. B 49, p. 14865(1994).Google Scholar
9. Speck, J. S., Seifert, A., Pompe, W. and Ramesh, R., J. Appl. Phys. 76, p. 477 (1994).Google Scholar
10. Pertsev, N. A. and Zembilgotov, A. G., J. Appl. Phys. 80, p. 6401 (1996).Google Scholar
11. Shirane, G., Hoshino, S. and Suzuki, K., Phys. Rev. 80, p. 1105 (1950).Google Scholar
12. Chou, C. C. and Wayman, C. M., Mater. Trans. JIM 33, p. 306 (1992).Google Scholar
13. Rossetti, G. A. Jr, Cross, L. E. and Cline, J. P., J. Mater. Sci. 30, p. 24 (1995).Google Scholar
14. Xu, Y., Ferroelectric Materials and Their Applications, Eiservier, Amsterdam, 1991, pp. 109.Google Scholar
15. Kang, Y. M., Ku, J. K. and Baik, S., in Ferroelectic Thin Films IV, edited by Turtle, B. A., Desu, S. B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Proc. 361, Pittsburgh, PA 1995), p. 569574.Google Scholar
16. Lee, K. S., Kang, Y. M. and Baik, S., Integrated Ferroelectrics, 14, p. 43 (1997).Google Scholar
17. Kim, S. S. and Baik, S., J. Vac. Sci. Technol. A 13, p. 95 (1995).Google Scholar