Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-04T13:02:37.671Z Has data issue: false hasContentIssue false

Influence of the Particle Size on Acoustic Phonon Modes of ZnO Nanocrystals

Published online by Cambridge University Press:  01 February 2011

Harish Kumar Yadav
Affiliation:
harish789@rediffmail.com, University of Delhi, Department of physics and Astrophysics, C\0 Dr Vinay Gupta, Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India, Delhi, 110007, India, 91-11-9873059996
K. Sreenivas
Affiliation:
kondepudysreenivas@rediffmail.com, University of Delhi, Department of Physics and Astrophysics, Delhi, 110007, India
Vinay Gupta
Affiliation:
vgupta@physics.du.ac.in, University of Delhi, Department of Physics and Astrophysics, Delhi, 110007, India
S. P. Singh
Affiliation:
sp68@rediffmail.com, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012, India
B. Sundarakannan
Affiliation:
sundarakannan1@yahoo.com, University of Puerto Rico, Department of Physics, San Juan, 00931-3343, Puerto Rico
R. S. Katiyar
Affiliation:
rkatiyar@uprrp.edu, University of Puerto Rico, Department of Physics, San Juan, 00931-3343, Puerto Rico
Get access

Abstract

Size dependence of the low frequency vibrational spectra of ZnO nanocrystals prepared using chemical method has been investigated. Optical transmission spectra of the ZnO colloid solution exhibit a shift in the onset of the absorption band edge from 332 to 350 nm due to particle growth. X-ray diffraction analysis of the prepared ZnO nanocrystals exhibit peaks corresponding to the hexagonal wurtzite structure. Two peaks with unusually very high intensity were observed in the low frequency (∼ 10- 25 cm-1) Raman spectra of these nanocrystals. The peak position of these phonon modes shifted towards lower frequencies as the size of the nanocrystals increases and assigned to the confinement of acoustic phonons in ZnO nanocrystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jagadish, C. and Pearton, S. J., Zinc oxide Bulk, Thin Films and Nanostructures, Elsevier Press (2006).Google Scholar
2. Alivisatos, A. P., J. Phys. Chem. 100, 13226 (1996).Google Scholar
3. Rajalakshmi, et al. J. Appl. Phys. 87, 2445 (2000).Google Scholar
4. Alim, K. A., Fonoberov, V. A., and Balandin, A. A., Appl. Phys. Lett. 86, 053103 (2005).Google Scholar
5. Jha, P. K. and Talati, M., Proceeding MRS, 61107.Google Scholar
6. Saviot, L., Champagnon, B., Duval, E., Kudriavtsev, I. A., and Ekimov, A. I., J. Non-Crystalline Solids 197, 238 (1996).Google Scholar
7. Fujii, M., Nagareda, T., Hayashi, S., and Yamamoto, K., Phys. Rev. B 44, 6243 (1991).Google Scholar
8. Fujii, M., Nagareda, T., Hayashi, S., and Yamamoto, K. J. Phys. Soc. Jpn. 61, 754 (1992)Google Scholar
9. Fujii, M., Kanzawa, Y., Hayashi, S., and Yamamoto, K., Phys. Rev. B 54, R8373 (1996).Google Scholar
10. Tanaka, A., Onari, S., and Arai, T., Phys. Rev B 47, 1237 (1993).Google Scholar
11. Tanaka, A., Onari, S., and Arai, T., Phys. Rev B 45, 6587 (1992).Google Scholar
12. Verma, P., Cordts, W., Irmer, G., and Monecke, J., Phys. Rev. B 60, 5778 (1999).Google Scholar
13. Spanhel, L., Anderson, M. A., J. Am. Chem. Soc. 113, 2826 (1991).Google Scholar
14. Lamb, H., Proc. London Math. Soc. 13, 187 (1882).Google Scholar