Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T04:35:45.416Z Has data issue: false hasContentIssue false

Structure Pinning During Phase-Separation of Polyamide/Ionomer Blends

Published online by Cambridge University Press:  10 February 2011

R. A. Weiss
Affiliation:
Dept. of Chemical Engineering and Polymer Science Program, University of Connecticut, Storrs, CT 06269–3136
Y. Feng
Affiliation:
Dept. of Chemical Engineering and Polymer Science Program, University of Connecticut, Storrs, CT 06269–3136
R. Tucker
Affiliation:
Dept. of Chemical Engineering and Polymer Science Program, University of Connecticut, Storrs, CT 06269–3136
R. Xie
Affiliation:
Dept. of Chemical Engineering and Polymer Science Program, University of Connecticut, Storrs, CT 06269–3136
C. C. Han
Affiliation:
Polymer Section, National Institute of Standards and Technology, Gaithersburg, MD 20899
A. Karim
Affiliation:
Polymer Section, National Institute of Standards and Technology, Gaithersburg, MD 20899
Get access

Abstract

Blends of lightly sulfonated polystyrene and poly(N,N'-dimethylethylene sebacamide) (Li-SPS/mPA) are miscible as a result of strong ion-amide complexation. The blends exhibit LCST phase behavior and an increase of the sulfonation level from 4 to 9.5 mol% raises the critical temperature by 150°C. Phase separation may be thermally induced and isthermodynamically reversible. The phase separation kinetics that occur following a temperature-jump deep into the spinodal region of the phase diagram deviate from conventional Cahn-Hilliard theory and the phase separation process stalls after a couple of hours, essentially pinning the structure at that point. The extent of phase-separation that occurs before pinning is temperature-dependent.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lu, X. and Weiss, R. A., Macromolecules, 24, 4381(1991).Google Scholar
2. Lu, X. and Weiss, R. A., Macromolecules, 25, 6185(1992).Google Scholar
3. Lu, X. and Weiss, R. A., Mater. Res. Soc., Proc. 215, 29 (1991).Google Scholar
4. Weiss, R. A. and Lu, X., Polymer, 35, 1963(1994).Google Scholar
5. Feng, Y., Schmidt, A. and Weiss, R. A., Macromolecules, 29, 3909 (1996).Google Scholar
6. Feng, Y., Weiss, R. A., Karim, A., Han, C. C., Anker, J. F. and Peiffer, D. G., Macromolecules, 29, 3918(1996).Google Scholar
7. Feng, Y., Weiss, R. A. and Han, C.C, Macromolecules, 29, 3925 (1996).Google Scholar
8. Molnar, A. and Eisenberg, A., Macromolecules, 25, 5774 (1992).Google Scholar
9. Molnar, A. and Eisenberg, A., Polymer, 32, 370 (1991).Google Scholar
10. Gao, Z., Molnar, A., Morin, F. G. and Eisenberg, A., Macromolecules, 25, 6460 (1992).Google Scholar
11. Rajagopolan, P., Kim, J.-S., Brack, H. P., Lu, X., Eisenberg, A., Weiss, R. A. and Risen, W. M., J. Polym. Sci., Polym. Phys Ed., 33, 495 (1995).Google Scholar
12. Ng, C. W. A., Bellinger, M. A. and MacKnight, W. J., Macromolecules, 27, 6942 (1994).Google Scholar
13. He, M., Liu, Y., Feng, Y., Jiang, Y.M. and Han, C.C., Macromolecules, 24, 464 (1991).Google Scholar
14. Cahn, J. W. and Hilliard, J. E., J. Chem. Phys., 28, 258 (1958).Google Scholar
15. Cahn, J. W. and Hilliard, J. E., J. Chem. Phys., 31, 688 (1959).Google Scholar
16. Huang, S. J. and Kozakiewicz, J., J. Macromol. Sci.-Chem., A51, 821 (1981).Google Scholar
17. de Gennes, P.G., J. Phys., Let. (Paris), 40, 69. (1979).Google Scholar
18. Bansil, R., Lal, J. and Carvalho, B. L., Polymer, 33, 2961 (1994).Google Scholar
19. Glotzer, S. C., Gyure, M. F., Sciortino, F., Coniglio, A. and Stanley, H. E., Phys. Rev. E, 49, 247 (1994).Google Scholar
20. Hashimoto, T., Phase Transition, 12, 47 (1988).Google Scholar