Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T06:46:33.056Z Has data issue: false hasContentIssue false

In-Situ Patiterning and Regrowth of InP Based Heterostructures using a Native Oxide Mask

Published online by Cambridge University Press:  28 February 2011

Y. L. Wang
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, New Jersey 07974
L. R. Harriott
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, New Jersey 07974
H. Temkin
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, New Jersey 07974
Get access

Abstract

We have successfully used an ultrathin (20-50 Å) native oxide layer on the surface of InP as an etch mask for transferring patterns onto the substrate. The oxide mask is grown in situ in O2 atmosphere, and the mask pattern is created by locally removing the oxide with a focused ion beam. Depending on the thickness of the mask, the required ion dose varies from 2×1014 to 2×1015 Ga/cm2. C12 etches the exposed areas selectively. Features as deep as 3 microns have been produced with such an ultrathin mask. High quality InGaAs and InP epitaxial layers have been overgrown on such patterned substrate. We have studied the formation and desorption of the oxide mask with Auger analysis. We also demonstrate that the secondary charged particle emission from a substrate during ion exposure provides a useful signal for the determination of the required dose.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Miyauchi, E., Morita, T., Takamori, A., Arimoto, H., Bamba, Y., and Hashimoto, H., J. Vac. Sci. Tecchnol., B 4 (1986).Google Scholar
2. Temkin, H., Harriott, L. R., and Panish, M. B., Appl. Phys. Lett, 52, 1478 (1988).Google Scholar
3. Harriott, L. R., Temkin, H., Hamm, R. A., Weiner, J. and Panish, M. B., J. Vac. Sci. Techchnol., B 7, 1467 (1989).Google Scholar
4. Temkin, H., Harriott, L. R., Hamm, R. A., Weiner, J., and Panish, M. B., Appl. Phys. Lett, 54, 1463 (1989).10.1063/1.101377Google Scholar
5. Wang, Y. L., Harriott, L. R., Hamm, R. A., and Temkin, H., App. Phys. Lett. 56, 749 (1990).Google Scholar
6. Harriott, L. R., Wang, Y. L., Chin, B. H., and Temkin, H., Proc. Mat. Res. Soc. Fall 1989 (in Press)Google Scholar
7. Taneya, M., Sugimoto, S., Hidaka, H. and Akita, K., Proc. Mat. Res. Soc. Fall 1989 (in Press)Google Scholar
8. Wang, Y. L., Temkin, H., Harriott, L. R., Hamm, R. A., and Weiner, J. S., Appl. Phys. Lett. (to be published).Google Scholar
9. Tsang, W. T., U. S. Pattent No. 4,622,093, Nov. 11, 1986.Google Scholar
10. Panish, M. B. and Temkin, H., Annu. Rev. Mater. Sci. 19, 209 (1989).10.1146/annurev.ms.19.080189.001233Google Scholar
11. Hollinger, G., Bergignat, E., Joseph, J. and Robach, Y., J. Vac. Sci. Technol. A 3, 2082 (1985).Google Scholar
12. Wagner, J. F. and Wilmsen, C. W., J. Appl. Phys. 51, 812 (1980).Google Scholar
13. Hsieh, Y. F. and Hull, R. (unpublished).Google Scholar