Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T01:14:11.348Z Has data issue: false hasContentIssue false

Thermoelectric Properties of Electrodeposited BiSbTe Nanowires

Published online by Cambridge University Press:  01 February 2011

Raja Sekharam Mannam
Affiliation:
rsm020@latech.edu, Louisiana Tech University, Institute for Micromanufacturing, Ruston, Louisiana, United States
Despina Davis
Affiliation:
ddavis@latech.edu, Louisiana Tech University, Institute for Micromanufacturing, Ruston, Louisiana, United States
Get access

Abstract

Bismuth antimony telluride (BiSbTe) nanowires were electrodeposited at constant potentials into polycarbonate templates from a tartaric-nitric acid baths having different electrolyte compositions. Composition analysis of the nanowires showed that Sb deposits at higher potentials compared to BiTe. Maximum seebeck coefficients of -337.7 μV/K and 227.2 μV/K were obtained for n-type and p-type nanowires samples Bi4.6Te5.4 and Bi4.3Sb5 respectively. Nonmonotonic resistance behavior was observed for all the nanowires.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Goldsmid, H. J. Thermoelectric Refrigeration, Plenum, New York (1964).Google Scholar
2 Venkatasubramanian, R. Siivola, E. Colpitts, T. and O'Quinn, B., Nature, 413, 597 (2001).Google Scholar
3 Dresselhaus, M. S. Lin, Y. M. Rabin, O. Jorio, A. Souza-Filho, A. G., Pimenta, M. A. Saito, R. Samsonidze, G. G. and Dresselhaus, G. Materials Science and Engineering C23, 129 (2003).Google Scholar
4 Dresselhaus, M. S. Chen, G. Tang, M. Y. Yang, R. Lee, H. Wang, D. Ren, Z. Fleurial, J. P. and Gogna, P. Advanced Materials, 19, 1043 (2007).10.1002/adma.200600527Google Scholar
5 Lenoir, B. Cassart, M. Michenaud, J. P. Scherrer, H. and Scherrer, S. Journal of Physics and Chemistry of Solids, 57, 89 (1996).Google Scholar
6 Smith, G. E. and Wolfe, R. Journal of Applied Physics, 33, 841 (1962).Google Scholar
7 Yim, W. M. and Amith, A. Solid State Electronics, 15 (1972).Google Scholar
8 Martin-Gonzalez, M., Prieto, A. L. Gronsky, R. Sands, T. and Stacy, A. M. Advanced Materials, 15, 1003 (2003).10.1002/adma.200304781Google Scholar
9 Frari, D. D. Diliberto, S. Stein, N. Boulanger, C. and Lecuire, J. M. Thin Solid Films, 483, 44 (2005).Google Scholar
10 Frari, D. D. Diliberto, S. Stein, N. Boulanger, C. and Lecuire, J.M. Journal of Applied Electrochemistry, 36, 449 (2006).Google Scholar
11 Xiao, F. Yoo, B. Lee, K. H. and Myung, N. V. Nanotechnology, 18, 335203 (2007).Google Scholar
12 Mannam, R. Agarwal, M. Roy, A. Singh, V. Varahramyan, K. and Davis, D. Journal of the Electrochemical Society, 156, B871 (2009).Google Scholar