Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T10:39:16.568Z Has data issue: false hasContentIssue false

Synthesis and Structural Characterization of a Hydrated Gallosilicate Zeolite with the Nat-Framework

Published online by Cambridge University Press:  28 February 2011

D. Xie
Affiliation:
University of Missouri Research Reactor, Columbia, MO 65211, USA
J. M. Newsam
Affiliation:
Exxon Research and Engineering Company, Route 22 East, Annandale, NJ 08801, USA
J. Yang
Affiliation:
University of Missouri Research Reactor, Columbia, MO 65211, USA Permanent address: Institute of Atomic Energy, Beijing, People's Republic of China
W. B. Yelon
Affiliation:
University of Missouri Research Reactor, Columbia, MO 65211, USA
Get access

Abstract

Gallosilicate NAT-framework zeolites have been synthesized from Na2O:TMA2O:Ga2O3:SiO2:H2O gels and characterized by chemical analysis and powder X-ray diffraction. The structure of a hydrated material (Orthorhombic, Fdd2, a = 18.423(4) Å, b = 18.826(3) Å, c = 6.652(1) Å) was determined using powder neutron diffraction. The framework Si:T ratio, Si-Ga segregation and non-framework cation and water configurations are similar to those in the analogous aluminosilicates. The geometrical effects of framework gallium substitution are consistent with those observed for other zeolite framework topologies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Meier, W. M., Olson, D. H., “Atlas of Zeolite Structure Types” (Structure Commission of the International Zeolite Association, 1978; available from Polycrystal Book Service, Pittsburgh, PA; second edition in preparation (1987).Google Scholar
2 Mortier, W. J., “Compilation of Extra-framework Cation Sites in Zeolites” (Butterworths, Surrey, 1982).Google Scholar
3 Kuhl, G., J. Inorg. Nucl. Chem. 33, 32613268 (1971).CrossRefGoogle Scholar
4 Newsam, j. M. and Vaughan, D. E. W., in: New Developments in Zeolite Science Technology, Eds. Murakami, Y., Iijima, A. and Ward, J.W. (Kodansha, Tokyo, 1986)Google Scholar
5 pp. 457464. Szostak, R., Thomas, T. L., J. Chem. Soc. Chem. Commun. 113–114 (1986).Google Scholar
6 Meyers, B. L., Ely, S. R., Kutz, N. A., Kaduk, J. A., van den Bossche, E., J. Catal. 91, 352355 (1985).Google Scholar
7 Newsam, J. M., J. Chem. Soc. Chem. Comm. 1295–1296 (1986).Google Scholar
8 Newsam, J. M., Jacobson, A. J., Vaughan, D. E. W., J. Phys. Chem. 90, 68586864 (1986).Google Scholar
9 Wright, P. A., Thomas, J. M., Cheetham, A. K., Nowak, A. K., Nature 318, 611614 1985.Google Scholar
10 Newsam, J. M., Mater. Res. Bull. 21, 661672 1986.Google Scholar
11 Newsam, J. M., Jarman, R. H., Jacobson, A. J., Mater. Res. Bull. 20, 125–136CrossRefGoogle Scholar
12 (1985). McCusker, L. B., Meier, W. M., Suzuki, K., Shin, S., Zeolites 6, 388391 (1986).Google Scholar
13 Newsam, J. M., Jorgensen, J. D., Zeolites, in press (1987).Google Scholar
14 Taylor, W. H., Meek, C. A., Jackson, W. W., Zeit. Kristallogr. 84, 373398 (1933).Google Scholar
15 Meier, W. M., Zeit. Kristallogr. 113, 430444 (1960).Google Scholar
16 Pechar, F., Schafer, W., Will, G., Zeit. Kristallogr. 164, 1924 (1983).Google Scholar
17 Hesse, K. F., Zeit. Kristallogr. 163, 6974 (1983).Google Scholar
18 Kirfel, A., Orthen, M., Will, G., Zeolites 4, 140146 (1984).Google Scholar
19 Artioli, G., Smith, J. V., Kvick, A., Acta CTryst. C40, 16581662 (1984).Google Scholar
20 Falth, L., Hansen, S., Acta Cryst. JB35, 18771880 (1979).Google Scholar
21 Kvick, A., Stahl, K. Smith, J. V., Zeit. Kristallogr. 171, 141154 (1985).Google Scholar
22 Artioli, G., Smith, J. V., Pluth, J. J., Acta Cryst. C42, 937942 (1986).Google Scholar
23 Mazzi, F., Larsen, A. O., Gottardi, G., Galli, E., N. Jb. Miner. Mh. 5, 219–228Google Scholar
24 (1986). Klaska, K. H., Jarchow, O., Zeit. Kristallogr. 172, 167174 (1985).Google Scholar
25 Ponomareva, T. M., Tomilov, N. P., Berger, A. S., Geokhimiya 6, 925931 (1974).Google Scholar
26 Tompson, C. W., Mildner, D. F. R., Mehregany, M., Sudol, J., Berliner, R., Yelon, W. B., J. Appl. Cryst. 17, 385394 (1984).CrossRefGoogle Scholar
27 Rietveld, H. M., J. Appl. Cryst. 2, 6571 (1969).Google Scholar
28 Ahtee, M., Unonius, L., Nurmela, M., Suorrti, P. J., Appl. Cryst. 17, 352–357Google Scholar
29 (1984). David, W. I. F., Mathewman, J. C., J. Appl. Cryst. 18, 461466 (1985).CrossRefGoogle Scholar
30 International Tables for Crystallography Volume A, (D. Riedel, Dordrecht, Holland, 1983).Google Scholar
31 Andersen, E. Krogh, Dano, M., Petersen, O. V., Medd. Gronland 181, 119 (1969).Google Scholar
32 Fischer, R., J. Appl. Cryst. 18, 258 (1985).Google Scholar