Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T05:43:29.724Z Has data issue: false hasContentIssue false

First-Principles Calculation of the Optical Properties of Nanocrystalline Silicon

Published online by Cambridge University Press:  28 February 2011

Masahiko Hirao*
Affiliation:
Advanced Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-03, Japan
Get access

Abstract

The electronic structure and optical properties of nanocrystalline silicon were calculated by the first-principles density functional pseudopotential approach. The calculated energy-gap upshift from the bulk-Si value is nearly proportional to the reciprocal of the crystallite size. Dipole transitions across the gap are weakly allowed and the transition elements decrease rapidly with increases in the crystallite size. The apparent lifetime, the time over which the intensity decreases to 1/e of the initial value, decreases sharply from milliseconds to microseconds within a certain temperature range. The effect of dehydrogenation and the structural stability were investigated using an ab initio molecular dynamics technique. When some of the surface hydrogen atoms are removed, subsequent lattice relaxation eliminates dangling bonds. Further dehydrogenation creates mid-gap states due to surface dangling bonds, which act as nonradiative recombination centers. The calculated results are compared with observations of porous Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Canham, L. T., Appl. Phys. Lett. 57,1046 (1990).Google Scholar
2 Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A. and Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990).Google Scholar
3 Iyer, S. S. and Xie, Y.-H., Science 260,40 (1993).Google Scholar
4 Canham, L., Bulletin, MRS, 22 (July 1993).Google Scholar
5 Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B. K., Koch, F. and Lehmann, V., Appl. Phys. Lett. 61,943 (1992).Google Scholar
6 Zhao, X., Schoenfeld, O., Kusano, J., Aoyagi, Y. and Sugano, T., Jpn. J. Appl. Phys. 33, L649 (1994).Google Scholar
7 Nakagawa, K., Nishida, A., Shimada, T., Yamaguchi, H. and Eguchi, K., Jpn. J. Appl. Phys. 31, L515 (1992).Google Scholar
8 Nishida, A., Nakagawa, K., Kakibayashi, H. and Shimada, T., Jpn. J. Appl. Phys. 31, L1219 (1992).Google Scholar
9 Xie, Y.-H., Wilson, W. L., Ross, F. M., Mucha, J. A., Fitzgerald, E. A., Macaulay, J. M. and Harris, T. D., J. Appl. Phys. 71, 2403 (1992).Google Scholar
10 Sanders, G. D. and Chang, Y.-C., Phys. Rev. B 45,9202 (1992).Google Scholar
11 Buda, F., Kohanoff, J. and Parrinello, M., Phys. Rev. Lett. 69,1272 (1992).Google Scholar
12 Read, A. J., Needs, R. J., Nash, K. J., Canham, L. T., Calcott, P. D. J. and Qteish, A., Phys. Rev. Lett. 69, 1232 (1992).Google Scholar
13 Ohno, T., Shiraishi, K. and Ogawa, T., Phys. Rev. Lett. 69, 2400 (1992).Google Scholar
14 Hybersten, M. S. and Needels, M., Phys. Rev. B 48,4608 (1993).Google Scholar
15 Takeda, K. and Shiraishi, K., Phil. Mag. B 65, 535 (1992).Google Scholar
16 Y Ren, S. and Dow, J. D., Phys. Rev. B 45,6492 (1992).Google Scholar
17 Proot, J. P., Delerue, C. and Allan, G., Appl. Phys. Lett. 61,1948 (1992).Google Scholar
18 Delerue, C., Allan, G. and Lannoo, M., Phys. Rev. B 48,11024 (1993).Google Scholar
19 Delley, B. and Steigmeier, E. F., Phys. Rev. B 47,1397 (1993).Google Scholar
20 Zhang, S. B. and Zunger, A., Appl. Phys. Lett. 63,1399 (1993).Google Scholar
21 Wang, L.-W. and Zunger, A., J. Phys. Chem. 100,2394 (1994).Google Scholar
22 Hirao, M. and Uda, T., Murayama, Y. in Microcrystalline Semiconductors: Materials Science & Devices, edited by Fauchet, P. M., Tsai, C. C., Canham, L. T., Shimizu, I., and Aoyagi, Y. (Mater. Res. Soc. Proc. 283, Pittsburgh, PA, 1993) pp. 425430.Google Scholar
23 Hirao, M. and Uda, T., Surf. Sci. 306, 87 (1994).Google Scholar
24 Uda, T. and Hirao, M., J. Phys. Soc. Jpn. Suppl. B 63,97 (1994).Google Scholar
25 Tsai, C., Li, K.-H., Kinosky, D. S., Qian, R.-Z., Hsu, T.-C., Irby, J. T., Banerjee, S. K., Tasch, A. F., Campbell, J. C., Hance, B. K. and White, J. M., Appl. Phys. Lett. 60, 1700 (1992).Google Scholar
26 Hybertsen, M. S. and Louie, S. G., Phys. Rev. Lett. 55,1418 (1985).Google Scholar
27 Vial, J. C., Bsiesy, A., Fishman, G., Gaspard, F., Hérino, R., Ligeon, M., Muller, F., Romestain, R. and Macfarlane, R. M. in Microcrystalline Semiconductors: Materials Science & Devices, edited by Fauchet, P. M., Tsai, C. C., Canham, L. T., Shimizu, I., and Aoyagi, Y. (Mater. Res. Soc. Proc. 283, Pittsburgh, PA, 1993) pp. 241246.Google Scholar
28 Vial, J. C., Bsiesy, A., Gaspard, F., Hérino, R., Ligeon, M., Muller, F. and Romestain, R., Phys. Rev. B 45,14171(1992).Google Scholar
29 Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985).Google Scholar
30 Ihara, S., Ho, S. L., Uda, T. and Hirao, M., Phys. Rev. Lett. 65,1909 (1990).Google Scholar