Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T10:27:21.994Z Has data issue: false hasContentIssue false

Iodine-Based dry Etching Chemistries for InP and Related Compounds

Published online by Cambridge University Press:  22 February 2011

S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
U. K. Chakrabarti
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
A. Katz
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
T. R. Fullowan
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

A comparison is given of the dry etching characteristics of InP and related materials in high ion density (>1011 cm−2 ) microwave discharges of HI, CH3I, C2H5I, C3H7I and C2H3I. The InIx species are more volatile than their InClx counterparts near room temperature and rapid etch rates can therefore be achieved without the need for sample heating. HI discharges provide faster etch rates than the halocarbon-based mixtures, but are more corrosive. All of these gas chemistries offer faster rates than conventional CH4/H2 mixtures. Halocarbon-iodide discharges still suffer from polymer deposition on the mask and within the reactor, as with CH4/H2. AES analysis shows an absence of contaminating residues with all of the iodine-based chemistries, and highly anisotropic features are obtained since the etching is driven by ion-enhanced desorption of the reaction products.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Donnelly, V. M., Flamm, D. L., Tu, C. W. and Ibbotson, D. E., J. Electrochem. Soc. 124 2533 (1982).Google Scholar
2. Barker, R. A., Mayer, T. M. and Burton, R. H., Appl. Phys. Lett. 40 583 (1982).Google Scholar
3. Tadokoro, T., Koyama, F. and Iga, K., Jap. J. Appl. Phys. 27 389 (1989).Google Scholar
4. Meo, N. L., Donnelly, J. P., O'Donnell, F. J., Geis, M. W. and O'Connor, K. J., Nucl. Inst. Mth in Phys. Res. B7 814 (1985).Google Scholar
5. Contolini, R. J., J. Electrochem. Soc. 135 929 (1988).Google Scholar
6. Stern, M. B. and Liao, P. F., J. Vac. Sci. Technol. B1 1053 (1983).Google Scholar
7. Hu, E. L. and Howard, R. E., Appl. Phys. Lett. 37 1022 (1980).Google Scholar
8. Pearton, S. J., Chakrabarti, U. K., Lane, E., Perley, A., Abernathy, C. R., Hobson, W. S. and Jones, K. S., J. Electrochem. Soc. 139 856 (1992).Google Scholar
9. Ibbotson, D. E., Flamm, D. L. and Donnelly, V. M., J. Appl. Phys. 54 5974 (1985).Google Scholar
10. Takimoto, K., Ohnata, K. and Shibata, T., Appl. Phys. Lett. 54 1497 (1989).Google Scholar
11. Flanders, D. C., Pressman, L. D. and Pinelli, G., J. Vac. Sci. Technol. B8 1990 (1990).Google Scholar
12. Pearton, S. J., Chakrabarti, U. K., Katz, A., Ren, F. and Fullowan, T. R., Appl. Phys. Lett. 60 838 (1992).Google Scholar
13. Pearton, S. J., Chakrabarti, U. K., Coblentz, D., Ren, F., Katz, A. and Fullowan, T. R., Electronics Lett. 28 438 (1992).Google Scholar
14. Asmussen, J., J. Vac. Sci. Technol. A7 883 (1989).Google Scholar