Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T13:29:35.283Z Has data issue: false hasContentIssue false

“Transport limiting mechanisms of amorphous (a-Si:H) and microcrystalline(mc-Si:H) thin film heterostructures for photovoltaic application”

Published online by Cambridge University Press:  01 February 2011

Shahrukh A. Khan
Affiliation:
University at Buffalo, Electrical Engineering, Buffalo, NY 14260.
W.A. Anderson
Affiliation:
University at Buffalo, Electrical Engineering, Buffalo, NY 14260.
Get access

Abstract

Direct conversion of sunlight into electricity employing amorphous (a-Si:H) and microcrystalline (mc-Si) silicon solar cell structures provides cheap, continuous, large-area device capability. However, the inherent instability due to light induced degradation of such cells poses a challenge for practical photovoltaic applications. To work around this problem, we have made use of a-Si:H/c-Si (crystalline) and mc-Si/c-Si heterostructures. Plasma decomposition of 2% silane gas (SiH4/He) in an ECR (electron cyclotron resonance)-CVD configuration forms the basis of the deposition technique. Electro-optical properties exhibit photoconductivity (σp) of 6.5×10−6 S/cm and a low dark conductivity (σd) of 1.4×10−9 S/cm for a-Si:H films and a relatively high σp of 2.1×10−4 S/cm and a high σd of 1.2×10−7 S/cm for mc-Si films. A possible multi-tunneling transport mechanism is evident for a low forward bias with the current conduction becoming space charge limited with increasing bias. The domination of this latter mechanism may be responsible for non-ideal junction behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

IX. References

1. Birkholz, M., Conrad, E., Lips, K., Selle, B., Sieber, I., Chirstiansen, S., Fuhs, W., Mat. Res. Soc. Symp. Proc. 609 (2000).Google Scholar
2. Fantoni, A, Vigranenko, Y., Fernandes, M., Schwartz, R., Vieira, M., Thin Solid Films, 383, 314317 (2001).Google Scholar
3. Jeung, J.H., Lee, H., Teng, L., Anderson, W.A., Mat. Res. Soc. Symp. Proc (2001).Google Scholar
4. Takata, H., Sakato, I., Shimikawa, R., Jpn. J. Appl. Phys, 41, 870872 (2002).Google Scholar
5. Song, Y.J., Park, M., Guliants, E., Anderson, W.A., Solar energy materials and solar cells, 64, 225240 (2000).Google Scholar
6. Mimura, H. and Hatanaka, Y., Jpn. J. Appl. Phys, 71, 23182320 (1992).Google Scholar
7. Marsal, L., Pallares, J., Correig, X., Calderer, J., Alcubilla, R., J. Appl. Phys, 79, 84938497 (1996).Google Scholar
8. Milnes, A.G., Feucht, D.L., “Heterojunctions and Metal semiconductor junctions”, (Academic Press, New York, 1972).Google Scholar
9. Jagannathna, B., Anderson, W.A., Solar energy materials and solar cells, 44, 165176 (1996).Google Scholar
10. Cleef, M. Van., “Amorphous-crystalline silicon heterojunctions and solar cells” (PhD Dissertation, University of Utrecht, 1998).Google Scholar
11. Song, Y.J., Anderson, W.A., Solar energy materials and solar cells, 64, 225240 (2000).Google Scholar
12. Matsuura, H., IEEE Trans.on Electron Devices, Vol 36, No 12 (1989).Google Scholar