Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T02:16:43.328Z Has data issue: false hasContentIssue false

Combinatorial Study and High Throughput Screening of Transparent Oxygen and Moisture Barrier Films

Published online by Cambridge University Press:  01 February 2011

Jaime Grunlan
Affiliation:
Avery Dennison Corporation, Avery Research Center, 2900 Bradley Street, Pasadena, CA 91107, U.S.A.
Aaron Chavira
Affiliation:
Avery Dennison Corporation, Avery Research Center, 2900 Bradley Street, Pasadena, CA 91107, U.S.A.
Timothy J. Wolfe
Affiliation:
Avery Dennison Corporation, Avery Research Center, 2900 Bradley Street, Pasadena, CA 91107, U.S.A.
Jay Akhave
Affiliation:
Avery Dennison Corporation, Avery Research Center, 2900 Bradley Street, Pasadena, CA 91107, U.S.A.
Charles Hamilton
Affiliation:
Avery Dennison Corporation, Avery Research Center, 2900 Bradley Street, Pasadena, CA 91107, U.S.A.
Ali R. Mehrabi
Affiliation:
Avery Dennison Corporation, Avery Research Center, 2900 Bradley Street, Pasadena, CA 91107, U.S.A.
Get access

Absract

High throughput screening methods for evaluating oxygen and moisture barriers are described. The screening methods are based on the change in a certain optical property, such as absorbance or fluorescence, due to a chemical reaction with oxygen gas or water vapor. The results of these measurements for several cases are presented and their advantages and disadvantages are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Devlin, J. P. High Throughput Screening: The Discovery of Bioactive Substances; Marcel Dekker: New York, 1997.Google Scholar
2. Doyle, P. M. J. Chem. Technol. Biotech. 1995, 64, 317324.Google Scholar
3. Gordon, E. M.; Kerwin, J. F. Jr Combinatorial Chemistry and Molecular Diversity in Drug Discovery; Wiley: New York, 1998.Google Scholar
4. Aramendia, M. A.; Borau, V.; Jimenez, C.; Marinas, J. M.; Romero, F. J.; Urbano, F. J. J. Catalysis 2002, 209, 413416.Google Scholar
5. Meredith, J. C.; Karim, A.; Amis, E. J. MRS Bulletin 2002, 27, 330335.Google Scholar
6. Sadagopan, D.; Pitchumani, R. J. Mech. Design 1997, 119, 494503.Google Scholar
7. Del Nobile, M. A.; Fava, P.; Piergiovanni, L. J. Food Eng. 2002, 53, 295300.Google Scholar
8. Brennan, A. M. TAPPI 1992, 75, 145148.Google Scholar
9. Yoon, D. S.; Roh, J. S. Adv. Func. Mater. 2002, 12, 373381.Google Scholar
10. Morgan, P. W. Ind. Eng. Chem. 1953, 45, 22962306.Google Scholar
11. Motegi, S. Bull. Jap. Soc. Sci. Fish. 1979, 45, 205209.Google Scholar
12. Park, J. H., Hong, D. H., Kim, Y. B., and Choi, D. K., J. Appl. Phys. 2002, 91, 1002210027.Google Scholar
13. Raimundo, I. M. and Narayanaswamy, R., Analyst 1999, 124, 16231627.Google Scholar
14. Brook, T. E.; Taib, R.; Narayanasawamy, R. Sensors and Actuators B 1997, 38–39, 272276.Google Scholar
15. Otsuki, S.; Adachi, K.; Taguchi, T. Sensors and Actuators B 1998, 53, 9196.Google Scholar
16. Sadoaka, Y.; Matsuguchi, M.; Sakai, Y.; Murata, Y. Sensors and Actuators B 1992, 7, 443446.Google Scholar
17. Sadoaka, Y.; Matsuguchi, M.; Sakai, Y.; Murata, Y. J. Mater. Sci. 1992, 27, 50955100.Google Scholar
18. Choi, M. M. F.; Tse, O. L. Anal. Chim. Acta 1999, 378, 127134.Google Scholar
19. Rharbi, Y.; Yekta, A.; Winnik, M. A. Anal. Chem. 1999, 71, 50455053.Google Scholar
20. Amao, Y.; Asai, K.; Okura, I.; Shinohara, H.; Nishide, H. Analyst 2000, 125, 19111914.Google Scholar
21. Hartmann, P.; Tettnak, W. Anal. Chem. 1996, 68, 26152620.Google Scholar
22. Barnikol, W. K. R.; Gaertner, Th.; Weiler, N. Rev. Sci. Instr. 1988, 59, 12041208.Google Scholar
23. Carraway, E. R.; Demas, J. N.; DeGraff, B. A. Langmuir 1991, 7, 29912998.Google Scholar
24. Initial MHTS experiments used a simple linear extrapolation from only one reference film, rather than the multiple reference polynomial fit used more recently. This linear approximation is only valid when the sample of interest has an MVTR within 10% of the reference film being used.Google Scholar
25. Bharadwaj, R. K.; Mehrabi, A. R.; Hamilton, C.; Trujillo, C.; Murga, M.; Fan, R.; Chavira, A.; Thompson, A. K. Polymer 2002, 43, 36993705.Google Scholar