Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-05T14:47:17.640Z Has data issue: false hasContentIssue false

Grazing incidence small-angle x-ray scattering applied to the characterization of nanocomposite thin films

Published online by Cambridge University Press:  21 March 2011

David Babonneau
Affiliation:
Instituto de Optica, CSIC, Serrano 121, 28006 Madrid, Spain
Amelia Suárez-García
Affiliation:
Instituto de Optica, CSIC, Serrano 121, 28006 Madrid, Spain
José Gonzalo
Affiliation:
Instituto de Optica, CSIC, Serrano 121, 28006 Madrid, Spain
Ivan R. Videnovic
Affiliation:
Institut für Physik, Universität Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
Michael G. Garnier
Affiliation:
Institut für Physik, Universität Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
Peter Oelhafen
Affiliation:
Institut für Physik, Universität Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
Michel Jaouen
Affiliation:
Laboratoire de Métallurgie Physique, UMR 6630 CNRS, Université de Poitiers, UFR Sciences, SP2MI, Téléport 2, Bd M. & P. Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France
André Naudon
Affiliation:
Laboratoire de Métallurgie Physique, UMR 6630 CNRS, Université de Poitiers, UFR Sciences, SP2MI, Téléport 2, Bd M. & P. Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France
Get access

Abstract

Grazing incidence small-angle x-ray scattering (GISAXS) allows to investigate precisely the microstructure of nanocomposite thin films containing metal nanocrystals produced using different synthesis techniques. We present results on the size, size distribution, shape, and correlation length of metallic nanoparticles embedded in different matrices fabricated by sequential pulsed laser deposition, magnetron sputtering, and ion-beam sputtering co-deposition. The morphology of the nanoparticles is discussed in terms of the different growth process that takes place in each case.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For a review, see, e.g., Physical Phenomena in Granular Materials, edited by Cody, G. D., Geballe, T. H., and Sheng, P., Materials Reseach Society Symposia Proceedings No. 195 (Materials Research Society, Pittsburgh, 1990).Google Scholar
2. Naudon, A. and Thiaudière, D., J. Appl. Crystallogr. 30, 822827 (1997).Google Scholar
3. Schmidbauer, M., Wiebach, Th., Raidt, H., Hanke, M., Kölher, R., and Wawra, H., Phys. Rev. B 58, 1052310531 (1998).Google Scholar
4. Babonneau, D., Petroff, F., Maurice, J.-L., Fettar, F., Vaurès, A., and Naudon, A., Appl. Phys. Lett. 76, 28922894 (2000).Google Scholar
5. Babonneau, D., Videnović, I. R., Garnier, M.G., and Oelhafen, P., Phys. Rev. B 63, 195401 (2001).Google Scholar
6. Kutsch, B., Lyon, O., Schmitt, M., Mennig, M., and Schmidt, H., J. Appl. Crystallogr. 30, 948956 (1997).Google Scholar
7. Rauscher, M., Salditt, T., and Spohn, H., Phys. Rev. B 52, 1685516863 (1995).Google Scholar
8. Pedersen, J. S., J. Appl. Crystallogr. 27, 595608 (1994).Google Scholar
9. Cattaruzza, E., d'Acapito, F., Gonella, F., Longo, A., Martorana, A., Mattei, G., Maurizio, C., and Thiaudière, D., J. Appl. Crystallogr. 33, 740743 (2000).Google Scholar
10. Ashcroft, N. W. and Lekner, J., Phys. Rev. 145, 8390 (1966).Google Scholar
11. Afonso, C. N., Gonzalo, J., Serna, R., Sande, J. C. G. de, Ricolleau, C., Grigis, C., Gandais, M., Hole, D. E., Townsend, P. D., Appl. Phys. A 69, S201–S207 (1999).Google Scholar
12. Babonneau, D., Briatico, J., Petroff, F., Cabioc'h, T., and Naudon, A., J. Appl. Phys. 87, 34323443 (2000).Google Scholar