Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T15:26:26.939Z Has data issue: false hasContentIssue false

EFFECTIVE SLIP LENGTH OF NANOSCALE MIXED-SLIP SURFACES

Published online by Cambridge University Press:  03 November 2009

NAT J. LUND
Affiliation:
MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria, New Zealand
SHAUN C. HENDY*
Affiliation:
MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria, New Zealand Industrial Research Limited, Gracefield, Lower Hutt, New Zealand (email: s.hendy@irl.cri.nz)
*
For correspondence; e-mail: s.hendy@irl.cri.nz
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present an approximate relation for the effective slip length for flows over mixed-slip surfaces with patterning at the nanoscale, whose minimum slip length is greater than the pattern length scale.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2009

References

[1]Barrat, J.-L. and Bocquet, L., “Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface”, Faraday Discuss. 112 (1999) 119127.CrossRefGoogle Scholar
[2]Barrat, J.-L. and Bocquet, L., “Large slip effect at a nonwetting fluid–solid interface”, Phys. Rev. Lett. 82 (1999) 46714674.Google Scholar
[3]Baudry, J., Charlaix, E., Tonck, A. and Mazuyer, D., “Experimental evidence for a large slip effect at a nonwetting fluid–solid interface”, Langmuir 17 (2001) 52325236.CrossRefGoogle Scholar
[4]Choi, C.-H. and Kim, C.-J., “Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface”, Phys. Rev. Lett. 96 (2006) 066001.Google Scholar
[5]Churaev, N. V., Sobolev, V. D. and Somov, A. N., “Slippage of liquids over lyophobic solid surfaces”, J. Colloid Interface Sci. 97 (1984) 574581.CrossRefGoogle Scholar
[6]Cottin-Bizonne, C., Barentin, C., Charlaix, E., Bocquet, L. and Barrat, J.-L., “Dynamics of simple liquids at heterogeneous surfaces: molecular-dynamics simulations and hydrodynamics description”, Eur. Phys. J. E 15 (2004) 427438.Google Scholar
[7]Cottin-Bizonne, C., Barrat, J.-L., Bocquet, L. and Charlaix, E., “Low-friction flows of liquid at nanopatterned interfaces”, Nature Mater. 2 (2003) 237240.CrossRefGoogle ScholarPubMed
[8]Craig, V. S. J., Neto, C. and Williams, D. R. M., “Shear-dependent boundary slip in an aqueous Newtonian liquid”, Phys. Rev. Lett. 87 (2001) 054504.Google Scholar
[9]de Gennes, P. G., “On fluid/wall slippage”, Langmuir 18 (2002) 34133414.Google Scholar
[10]Hendy, S. C., Jasperse, M. and Burnell, J., “Effect of patterned slip on micro- and nanofluidic flows”, Phys. Rev. E 72 (2005) 016303.Google Scholar
[11]Hendy, S. C. and Lund, N. J., “Effective slip boundary conditions for flows over nanoscale chemical heterogeneities”, Phys. Rev. E 76 (2007) 066313.Google Scholar
[12]Joseph, P., Cottin-Bizonne, C., Benot, J.-M., Ybert, C., Journet, C., Tabeling, P. and Bocquet, L., “Slippage of water past superhydrophobic carbon nanotube forests in microchannels”, Phys. Rev. Lett. 97 (2006) 156104.Google Scholar
[13]Lauga, E. and Stone, H. A., “Effective slip in pressure-driven Stokes flow”, J. Fluid Mech. 489 (2003) 5577.Google Scholar
[14]Neinhuis, C. and Barthlott, W., “Characterization and distribution of water-repellent, self-cleaning plant surfaces”, Ann. Bot. 79 (1997) 667677.CrossRefGoogle Scholar
[15]Onda, T., Shibuichi, S., Satoh, N. and Tsujii, K., “Super-water-repellent fractal surfaces”, Langmuir 12 (1996) 21252127.Google Scholar
[16]Philip, J. R., “Flows satisfying mixed no-slip and no-shear conditions”, Z. Angew. Math. Phys. 23 (1972) 353372.CrossRefGoogle Scholar
[17]Qur, D., “Fakir droplets”, Nature Mater. 1 (2002) 1415.CrossRefGoogle Scholar
[18]Sbragaglia, M. and Prosperetti, A., “A note of the effective slip properties for microchannel flows with ultrahydrophobic surfaces”, Phys. Fluids 19 (2007) 043603.Google Scholar
[19]Schnell, E., “Slippage of water over nonwettable surfaces”, J. Appl. Phys. 27 (1956) 11491152.CrossRefGoogle Scholar
[20]Thompson, P. A. and Robbins, M. O., “Shear flow near solids: epitaxial order and flow boundary conditions”, Phys. Rev. A 41 (1990) 68306837.CrossRefGoogle ScholarPubMed
[21]Vinogradova, O. I., “Slippage of water over hydrophobic surfaces”, Int. J. Miner. Process. 56 (1999) 3160.CrossRefGoogle Scholar
[22]Zhang, X. H., Quinn, A. and Ducker, W. A., “Nanobubbles at the interface between water and a hydrophobic solid”, Langmuir 24 (2008) 47564764.Google Scholar
[23]Zhu, Y. and Granick, S., “Rate-dependent slip of Newtonian liquid at smooth interfaces”, Phys. Rev. Lett. 87 (2001) 096105.CrossRefGoogle Scholar
[24]Zhu, Y. and Granick, S., “Limits of the hydrodynamic no-slip boundary condition”, Phys. Rev. Lett. 88 (2002) 106102.Google Scholar