Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-12T16:35:11.562Z Has data issue: false hasContentIssue false

Photoluminescence from amorphous SiO2/Silicon/amorphous SiO2single quantum well structures

Published online by Cambridge University Press:  17 March 2011

Y.Q. Wang
Affiliation:
Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, 456-8587, Japan
Y. Ishikawa
Affiliation:
Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, 456-8587, Japan
N. Shibata
Affiliation:
Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, 456-8587, Japan
Get access

Abstract

Amorphous silicon dioxide/silicon/amorphous silicon dioxide single quantum well structures were fabricated by oxygen implantation followed by thermal oxidation. No photoluminescence (PL) was observed from the as grown samples. We found that annealing in hydrogen allows the single quantum well (SQW) structures to emit two-peak (blue and yellow) PL at room temperature (RT). The blue PL (2.9 eV) does not change with the thickness of Si layers or the temperature. The yellow peak varied from 2.0 eV to 2.4 eV with thinning of the Si layer from 5 nm to 0.5 nm. Lowering the temperature also changed the yellow peak position of the 1.5 nm Si-SQW structure from 2.3 eV (RT) to 2.6 eV (8.4 K). We conclude that the blue PL is from SiO2 and the yellow PL is caused by a recombination process in the Si-SQW.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L.T., Appl.Phys. Lett., 57, 1046 (1990).Google Scholar
2. Cullis, A.G. and Canham, L.T., Nature, 353, 335 (1991).Google Scholar
3. Cullis, A.G., Canham, L.T., and Calcott, P.D.J., J. Appl. Phys., 82, 909 (1997).Google Scholar
4. Fauchet, P.M., in Porous Silicon, edited by Feng, Z.C. and Tsu, R. (World Scientific, Singapore, 1994), pp. 429.Google Scholar
5. Lu, Z.H., Lockwood, D.J. and Baribeau, J.-M., Nature, 378, 258 (1995).Google Scholar
6. Takahashi, Y., Furuta, T., Ono, Y., Ishiyama, T., and Tabe, M., Jpn. J. Appl. Phys., 34, 950 (1995).Google Scholar
7. Saeta, P.N. and Gallagher, A.C., J. Appl. Phys., 77, 4639 (1995).Google Scholar
8. Steigmeier, E.F., Morf, R., Grutzmacher, D., Auderset, H., Delley, B. and Wessicken, R., Appl. Phys. Lett., 69, 4165 (1996).Google Scholar
9. Lockwood, D.J., Lu, Z.H. and Baribeau, J.-M., Phys. Rev. Lett., 76, 539 (1996).Google Scholar
10. Tsybeskov, L., Hirschman, K.D., Duttagupta, S.D., Fauchet, P.M., Zacharias, M., McCaffrey, J.P., and Lockwood, D.J., Appl. Phys. Lett., 72, 43 (1998).Google Scholar
11. Kanemitsu, Y. and Okamoto, S., Phys. Rev. B, 56, 15561 (1997).Google Scholar
12. Ishikawa, Y. and Shibata, N., Appl. Phys. Lett., 61, 1543 (1992).Google Scholar
13. Ishikawa, Y., Saito, T., Shibata, N., and Fukatsu, S., Nucl. Instr. & Meth. B, 147, 43 (1999).Google Scholar
14. Kim, K., J. Vac. Sci. Technol. A16, 2272 (1998).Google Scholar
15. Saeta, P.N. and Gallagher, A.C., J. Appl. Phys. 77, 4639 (1995).Google Scholar