Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T04:58:33.943Z Has data issue: false hasContentIssue false

Environmental determinism of community structure across trophic levels: moth assemblages and substrate type in the rain forests of south-western China

Published online by Cambridge University Press:  13 October 2014

R. L. Kitching*
Affiliation:
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China Environmental Futures Research Institute and Griffith School of Environment, Griffith University, Nathan, Queensland 4111, Australia
A. Nakamura
Affiliation:
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
M. Yasuda
Affiliation:
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
A. C. Hughes
Affiliation:
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
Cao Min
Affiliation:
Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
*

Abstract:

Soil type may drive vegetation structure. In turn, the richness, identity and diversity of arthropod herbivores may be related to plant diversity through specific host plant relationships in a location. We test the hypothesis that the soil type (calcicolous vs alluvial soils) will drive the assemblage structure of a dominant group of arthropod herbivores: the moths. We used sampling sites in rain-forest fragments in south-western China around the Xishuangbanna Tropical Botanical Gardens (21°41′N, 101°25′E) to test this hypothesis. We used Pennsylvania style light traps to take point samples of macromoths and pyraloids from four sampling sites in forest remnants on a limestone geological base and four from alluvial-based forest. A total of 3165 moths (1739 from limestone-based and 1255 from alluvium-based forests) was collected representing 1255 species. The limestone-based sites showed statistically similar levels of species richness and other alpha diversity indices to the four alluvium-based site. Nevertheless the sites were clearly significantly different in terms of species composition. Analysis of contrasting similarity (‘beta’ diversity) indices suggested that there was ‘leakage’ between the two classes of sites when ‘rare’ species were emphasized in the calculations. We used an indicator value procedure to select species that most characterized this separation. We expect that these differences reflect associated changes in plant assemblage structure acting through the herbivorous habits of larval moths. Accordingly, in any assessment of landscape level diversity the nature of the substrate and its associated vegetation is clearly of great importance. This observation also has consequences for the design of conservation programmes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ANDERSON, M. J., GORLEY, R. N. & CLARKE, K. R. 2008. PERMANOVA +for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth. 214 pp.Google Scholar
BASSET, Y., CIZEK, L., CUÉNOUD, P., DIDHAM, R. K., GUILHAUMON, F., MISSA, M., NOVOTNY, V., ØDEGAARD, F., ROSLIN, T., SCHMIDL, J., TISHECHKIN, A. K., WINCHESTER, N. N., ABERLENC, H-P., BAIL, J., BARRIOS, H., BRIDLE, J. R., CASTAÑO-MENESES, G., CORBARA, B., CURLETTI, G., DAROCHA, W. D., DEBAKER, D., DELABIE, J. H. C., DEJEAN, A., FAGAN, L. L., FLOREN, A., KITCHING, R. L., MEDIANERO, L. E., MILLER, S. E., GAMA, DE, OLIVEIRA, E., ORIVEL, J., POLLET, M., RAPP, M., RIBEIRO, S. P., ROISIN, Y., ROUBIK, D. W., SCHMIDT, J. B., SORENSEN, L. & LEPONCE, M. 2012. How many arthropod species live in a tropical forest? Science 338:14811484.Google Scholar
BECK, J. & LINSENMAIR, K. E. 2006. Feasibility of light-trapping in community research on moths: attraction radius of light, completeness of samples, nightly flight times and seasonality of south-east Asian hawkmoths. Journal of Research on the Lepidoptera 39:1837.Google Scholar
CAO, M. & ZHANG, J. H. 1997. Tree species diversity of tropical forest vegetation in Xishuangbanna, S. W. China. Biotropica 6:9951006.Google Scholar
CAO, M., ZOU, X. M., WARREN, M. & ZHU, H. 2006. Tropical forests of Xishuangbanna, China. Biotropica 38:306309.Google Scholar
CHAO, A. & JOST, L. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:25332547.Google Scholar
CHAO, A., CHAZDON, R. L., COLWELL, R. K. & SHEN, T. J. 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters 8:148159.Google Scholar
CHAO, A., CHAZDON, R. L., COLWELL, R. K. & SHEN, T. J. 2006. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62:361371.Google Scholar
CHAPMAN, P. 1993. Caves and cave life. Collins, London. 219 pp.Google Scholar
CHASE, J. M., KRAFT, N. J. B., SMITH, K. G., VELLEND, M. & INOUYE, B. D. 2011. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2: art24.CrossRefGoogle Scholar
CHEN, H., FAN, Y., ZHAO, Z., WANG, Z., XUE, Z. & ZHOU, W. 2011. Study on the geo-ecology of soil fauna in typical karst area of Guizhou Province in China. Chinese Agricultural Science Bulletin 27:208215. [In Chinese with English Abstract]Google Scholar
CLARKE, K. R. & GORLEY, R. N. 2006. PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth. 190 pp.Google Scholar
CLEMENTS, R., SODHI, N. S., SCHILTHUIZEN, M. & NG, P. 2006. Karsts of Southeast Asia: neglected and imperiled arks of biodiversity. BioScience 56:733742.Google Scholar
COLWELL, R. K., CHAO, A., GOTELLI, N. J., LIN, S.-Y., MAO, C. X., CHAZDON, R. L. & LONGINO, J. T. 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology 5:321.Google Scholar
DENNIS, R. L. H. 2012. A resource-based habitat view for conservation: butterflies in the British landscape. Wiley, Chichester. 420 pp.Google Scholar
DRAKE, V. A. & GATEHOUSE, G. eds. 1995. Insect migration: tracking resources in space and time. Cambridge University Press, Cambridge. 478 pp.CrossRefGoogle Scholar
DUFRÊNE, M. & LEGENDRE, P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67:345366.Google Scholar
FAN, Y. L., XIONG, K. N. & CHEN, H. 2013. Study on the diversity of soil macrofauna in karst mountainous area in Guizhou Province. Research of Soil and Water Conservation 20:9296. [In Chinese with English Abstract]Google Scholar
GRILLE, C. E. V. 2003. Forest structure and vertical stratification of small mammals in a secondary Atlantic forest, south-eastern Brazil. Studies on Neotropical Fauna and Environment 38:8185.Google Scholar
HEATH, J. 1965. A genuinely portable UV light trap. Entomologists’ Record and Journal of Variation 77:236238.Google Scholar
HOLLOWAY, J. D. 1986. Moths of Borneo Part 1. Key to Families; Cossidae, Metarbelidae, Ratardidae, Dudgeonidae, Epipyropidae, Limacodidae. Malayan Nature Journal 40:1165.Google Scholar
HOLLOWAY, J. D. 1993. Moths of Borneo Part 3. Lasiocampidae, Eupterotidae, Bombycidae, Brahmaeidae, Saturniidae, Sphingidae. Malayan Nature Journal 43:1199.Google Scholar
HOLLOWAY, J. D. 1997. Moths of Borneo Part 11. Geometridae: Ennominae. Malayan Nature Journal 47:1309.Google Scholar
JOST, L. 2006. Entropy and diversity. Oikos 113:363375.CrossRefGoogle Scholar
JOST, L., CHAO, A. & CHAZDON, R. L. 2011. Compositional similarity and β (beta) diversity. Pp. 6684 in Magurran, A. E. & McGill, B. (eds). Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford.Google Scholar
KITCHING, R. L., BOULTER, S. L., VICKERMAN, G., LAIDLAW, M., HURLEY, K. L. & GRIMBACHER, P. L. 2005. The comparative assessment of arthropod and tree biodiversity in old-world rainforests: the Rainforest CRC/Earthwatch protocol manual. (Second edition revised). Rainforest Cooperative Research Centre, Cairns. 80 pp.Google Scholar
KITCHING, R. L., ASHTON, L. A., NAKAMURA, A., WHITAKER, T. & KHEY, V. T. 2013. Distance driven species turnover in Bornean rainforests: homogeneity and heterogeneity in primary and post-logging forests. Ecography 36:675682.Google Scholar
LAN, G. Y., HU, Y. H., CAO, M., ZHU, H., WANG, H., ZHOU, S. H., DENG, X. B., CUI, J. Y., HUANG, J. G., LIU, L. Y., XU, H. L., SONG, J. P. & HE, Y. C. 2008. Establishment of the Xishuangbanna tropical forest dynamics plot: species compositions and spatial distribution patterns. Journal of Plant Ecology 32:287298. [In Chinese with English Abstract]Google Scholar
LI, H. M., AIDE, T. M. & MA, Y. X. 2007. Demand for rubber is causing loss of high diversity rain forest in SW China. Biodiversity and Conservation 16:17311745.Google Scholar
LI, H. M., MA, Y. X. & LIU, W. J. 2009. Clearance and fragmentation of tropical rain forest in Xishuangbanna, SW China. Biodiversity and Conservation 18:34213440.Google Scholar
MAGURRAN, A. 2003. Measuring biological diversity. Wiley-Blackwell, Oxford. 264 pp.Google Scholar
MANSOR, M. S., SAH, S. A. M., LIM, C. K. & RAHMAN, M. A. 2011. Bird species diversity in the Padawan Limestone Area, Sarawak. 2011. Tropical Life Sciences Research 22:6580.Google Scholar
MCGEOCH, M. A., VAN RENSBURG, B. J. & BOTES, A. 2002. The verification and application of bioindicators: a case study of dung beetles in a savanna ecosystem. Journal of Applied Ecology 39:661672.Google Scholar
NOVOTNY, V., BASSET, Y., MILLER, S. E., DROZD, P. & CIZEK, L. 2002. Host specialization in leaf-chewing insects in a New Guinean rain forest. Journal of Animal Ecology 71:400412.Google Scholar
NOVOTNY, V., BASSET, Y. & KITCHING, R. L. 2003. Herbivore assemblages and their food resources. Pp. 4053 in Basset, Y., Novotny, V., Miller, S. E. & Kitching, R. L. (eds). Arthropods of tropical forests: spatio-temporal dynamics and resource use in the canopy. Cambridge University Press, Cambridge.Google Scholar
NOVOTNY, V., BASSET, Y., MILLER, S. E., KITCHING, R. L., LAIDLAW, M., DROZD, P. & CIZEK, L. 2004. Local species richness of leaf-chewing insects feeding on woody plants from one hectare of a lowland rainforest. Conservation Biology 18:227237.Google Scholar
NOVOTNY, V., DROZD, P., MILLER, S. E., KULFAN, M., JANDA, M., BASSET, Y. & WEIBLEN, G. D. 2006. Why are there so many species of herbivorous insects in tropical rainforests? Science 313:11151118.Google Scholar
ØDEGAARD, F. 2000. The relative importance of trees versus lianes as host for phytophagous beetles (Coleoptera) in tropical forests. Journal of Biogeography 27:283296.Google Scholar
RAHMAN, M. A., DIE, L. L., FONG, P. H., JOWSHIP, J. B., PANDONG, J. J. G., HAZALI, R. & MARNI, W. 2004. Diversity and abundance of understorey avifauna. Sarawak Bau limestone biodiversity. Sarawak Museum Journal 80:243249.Google Scholar
REGIER, J. C., MITTER, C., ZWICK, A., BAZINET, A. L., CUMMINGS, M. P., KAWAHARA, A. Y., SOHN, J.-C., ZWICK, D. J., CHO, S., DAVIS, D. R., BAIXERAS, J., BROWN, J., PARR, C., WELLER, S., LEES, D. C. & MITTER, K. T. 2013. A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera moths and butterflies. PLoS ONE 8:123.Google Scholar
ROBINSON, G. S., ACKERY, P. R., KITCHING, I. J., BECCALONI, G. W. & HERNÁNDEZ, L. M. 2001. Host plants of the moth and butterfly caterpillars of the Oriental Region. Natural History Museum, London. 744 pp.Google Scholar
ROBINSON, H. S. & ROBINSON, P. J. M. 1950. Some notes on the observed behaviour of Lepidoptera in flight in the vicinity of light-sources together with a description of a light-trap designed to take entomological samples. Entomologist's Gazette 1:315.Google Scholar
SALISBURY, E. J. 1920. The significance of the calcicolous habit. Journal of Ecology 8:202215.Google Scholar
SCHILTHUIZEN, M., CHAI, H. N., KIMSIN, T. E. & VERMEULEN, J. J. 2003. Abundance and diversity of land snails on limestone in Borneo. Raffles Bulletin of Zoology 51:3542.Google Scholar
SCHILTHUIZEN, M., LIEW, T. S., ELAHAN, B. & LACKMAN-ANCRENAZ, I. 2005. Effects of karst forest degradation on pulmonate and prosobranch land snail communities in Sabah, Malaysian Borneo. Conservation Biology 19:949954.Google Scholar
STRUEBIG, M. J., KINGSTON, T., ZUBAID, A., LE COMBER, S. C., ADNAN, A. M., TURNER, A., KELLY, J., BOZEK, M. & ROSSITERA, S. J. 2009. Conservation importance of limestone karst outcrops for Palaeotropical bats in a fragmented landscape. Biological Conservation 142:20892096.Google Scholar
TAYLOR, L. R & FRENCH, R. A. 1974. Effects of light-trap design and illumination on samples of moths in an English woodland. Bulletin of Entomological Research 65:583594.Google Scholar
WANG, H., ZHU, H. & LI, B. G. 1997. Vegetation on limestone in Xishuangbanna, southwest China. Guihaia 17:101117. [In Chinese with English Abstract]Google Scholar
WILLIAMS, C. B. 1948. The Rothamsted light trap. Proceedings of the Royal Entomological Society of London A, 31:135144.Google Scholar
ZHU, H. 2002. Ecology and biogeography of the limestone vegetation in southern Yunnan, SW China. Yunnan Science & Technology Press, Kunming. 66 pp.Google Scholar
ZHU, H., WANG, H., LI, B. & XU, Z. 1996. A phytogeographical research on the forest flora of limestone hills in Xishuangbanna. Guihaia 16:317329. [In Chinese with English Abstract]Google Scholar
ZHU, H., WANG, H. & LI, B. 1998. The structure, species composition and diversity of the limestone vegetation in Xishuangbanna, SW China. Gardens’ Bulletin, Singapore 50:533.Google Scholar
ZHU, H., WANG, H., LI, B. & SIRIRUGSA, P. 2003. Biogeography and floristic affinity of the limestone flora in southern Yunnan, China. Annals of the Missouri Botanical Garden 90:444465.Google Scholar
ZHU, H., XU, Z. F., WANG, H. & LI, B. G. 2004. Tropical rain forest fragmentation and its ecological and species diversity changes in southern Yunnan. Biodiversity and Conservation 13:13551372.Google Scholar
ZHU, H., CAO, M. & HU, H. 2006. Geological history, flora, and vegetation of Xishuangbanna, southern Yunnan, China. Biotropica 38:310317.Google Scholar