Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T06:01:59.136Z Has data issue: false hasContentIssue false

Oocyte reaction to penetrating sperm

Published online by Cambridge University Press:  26 September 2008

G. Galeati
Affiliation:
Istituto di Fisiologia Veterinaria-Ozzano Emilia, Bologna, Italy

Extract

Before fertilisation the egg is metabolically quiescent and its nucleus is arrested at metaphase of the second meiosis. After sperm-egg fusion, the arrested nucleus resumes meiosis, and then changes into the female pronucleus. Such a sequence of morphological and biochemical events is called “activation”. The inital responses of the egg to activation by the sperm include cortical granule exocytosis and resumption of meiosis.

Type
Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bement, W.M. & CApco, D.G.. (1990). Protein Kinase C acts down stream of calcium at entry into the first mitotic interphase of Xenopus Laevis. Cell Reg. 1, 315–26.CrossRefGoogle Scholar
Brackett, B.C., Younis, A.I. & Fayer, Hosken RA (1989). Enhanced viability after in vitro fertilization of bovine oocytes matured in vitro with high concentrations of luteinizing hormone. Fertill. Steril. 52, 319–24.CrossRefGoogle ScholarPubMed
Calvin, H.I., Grosshans, K. & Blake, E.J.. (1986). Estimation and manipulation of glutathione levels in prepuberal mouse ovaries and ova: relaevance to sperm nucleus transformation in the fertilized egg. Gemete Res 14, 265–75.CrossRefGoogle Scholar
Colonna, R., Tatone, C., Malgaroli, A., Euseri, F. & Mangia, F.. (1989). Effects of protein kinase C stimulation and free Ca2+ rise in mammalian egg activation. Gemete Res. 24, 171–83.CrossRefGoogle ScholarPubMed
Cuthbertson, KSR, Cobbold, P.H. (1985). Phorbol ester and sperm activate mouse oocyte by inducing sustained oscillations in cell Ca2+. Nature 316, 541–2.CrossRefGoogle ScholarPubMed
DeFelici, M., Dolci, S., & Siracusa, G.. (1987). Involvement of thiol-disulfide groups in the sensitivity of fully grown mouse oocytes to calcium-free medium. J. Exp. Zool. 243, 283–7.CrossRefGoogle Scholar
Ding, J. & Foxcroft, G.R.. (1992). Follicular heterogeneity adn oocyte maturation in vitro pigs. Reprod. 47, 648–55.CrossRefGoogle Scholar
Ding, J., Clarke, N., Nagai, T. & Moor, R.M.. (1992). Protein and nuclear changes in pig eggs. Mol. Reprod. Dev 31, 287–96.CrossRefGoogle ScholarPubMed
Endo, Y., Schultz, R.M. & Kopf, G.S.. (1987). Effects of phorbol esters and a diacylglycerol on mouse eggs: inhibition of ertilization and modification of the zona pellucia. Dev. Biol. 119, 199209.CrossRefGoogle Scholar
Fissore, R.A., Dobrinsky, J.R., Balise, J.J., Duby, R.T. & Robl, J.M.. (1992). Patterns of intracellular Ca2+ concentrations in fertilized bovine eggs. Biol. Reprod. 47, 960–9.CrossRefGoogle ScholarPubMed
Funahashi, H., Stumpf, T.T., Terlouw, S.L. & Day, B.N.. (1993). Effects of electrical stimulation before or after in virto fertilization of sperm penetration and pronuclear formation of pig oocytes. Mol. Reprod. Dev. 36,361–7.CrossRefGoogle ScholarPubMed
Galeati, G., Modina, S., Lauria, A. & Mattioli, M. (1991). Follicle somatic cells influence pig oocyte penetrability adn cortical granule distribution. Mol. Reprod. Dev. 29, 40–6.CrossRefGoogle Scholar
Howlett, S. & Bolton, V.N.. (1985). Sequence and regulation of morphological and moelcular events during the first cell cycle of mouse embryogenesis. J. Embryol. Exp. Morphol. 87, 175206.Google Scholar
Jackson, R.C. & Modern, P.A.. (1990). N-ethylmaleimidesensitive protein(s) involved in cortical exocytosis in the sea urchin egg: localization to both cortical vesicles and plasma membrance. J. Cell. Sci. 96, 313–21.CrossRefGoogle Scholar
Kline, D.. (1988). Calcium-dependent events at fertilization of the frog egg: injection of a calcium buffer blocks ion channel opening, exocytosis, and formation of pronuclei. Dev. Biol. 126, 346–61.CrossRefGoogle ScholarPubMed
Kline, D. & Kline, I.T.. (1992). Thapsigargin activates a calcium influx pathway in the unfertilized mouse egg and suppresses repetitive calcium transients in the fertilized egg. J. Biol. Chem. 267, 17624–30.CrossRefGoogle ScholarPubMed
Loewenstein, W.R.. (1981). Juctional intercellular communication: the cell-to-cell membrane channel. Physiol. Rev. 61, 829913.CrossRefGoogle Scholar
Mattioli, M., Galeati, G. & Seren, E.. (1988a). Effect of follicle someatic cells during pig oocyte maturation on egg penetrability and male pronucleus formation. Gamete Res. 20, 177–83.CrossRefGoogle ScholarPubMed
Mattioli, M., Galeati, G., Bacci, M.L. & Seren, E.. (1988a). Follicular factors influence oocyte fertilizability by modulating the intercellular cooperation between cumulus cells and oocyte. Gamete Res. 21, 223–32.CrossRefGoogle ScholarPubMed
Mattioli, M., Bacci, M.L., Galeati, G. & Seren, E.. (1991). Effects of LH and FSH on the naturation of pig oocytes in vitro. Theriogenology 36, 95105.CrossRefGoogle Scholar
Mattoli, M., Galeati, G., Barboni, B. & Seren, E.. (1994). Concentration of cyclic AMP during the maturation of pig oocytes in vivo and invitro J. Reprod. Fert 100, 403–9.CrossRefGoogle Scholar
Meister, A. (1983). Selective modification of glutathione metabolism. Sciencen 220, 472–7.CrossRefGoogle ScholarPubMed
Miyazaki, S.. (1988). Inositol 1,4,5-trisphosphate-induced clacium release and guanine nucleotide-binding proteinmediated periodic calcium rises in golden hamster eggs. J. Cell. Biol. 106, 345–53.CrossRefGoogle Scholar
Miyazaki, S.. (1990). Cell signallinga at fertilization of hamster eggs. J. Reprod. Fert Suppl. 42, 163–75.Google Scholar
Miyazaki, S., Hashimoto, N., Yoshimoto, Y., Kishimoto, T., Igusa, Y., & Hiramoto, Y.. (1986). Temporal adn spatial dynamics of the periodic increase in intracellular free calcium at fertiliszation of golden hamster eggs. Dev. Biol. 118, 259–67.CrossRefGoogle Scholar
Moor, R.M. & Gandolfi, F.. (1987). Molecular and cellular changes associated with maturation and early develpment of sheep eggs. J. Reprod. Fert. Suppl. 34, 5569.Google Scholar
Naito, K., Dean, F.P. & Toyada, Y.. (1992). Comparison of histone H1 kinase activity during meiotic maturation between two types of porcine oocytes matured in different media in vitro. Biol. Reprod. 47, 43–7.CrossRefGoogle Scholar
Perreault, S.D.,Barbee, R.R. & Slott, V.L.. (1988). Importance of glutathione in the acquising activity in maturing hamster oocytes. J. Biol. 125, 181–6.Google ScholarPubMed
Perreault, S.D.. (1990). Regulationl of sperm nuclear reactivation during fertilization. In Fertillization in mammals, Bavister, B.D., Cummins, J.Roldan, ERS pp. 285296. Norwell, MA: Serono Symposia.Google Scholar
Peter, M., Nakagawa, J., Doree, M., Labbe, J.C. & Nigg, E.A.. (1990). In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell 61, 591602.CrossRefGoogle Scholar
Sun, F.Z., Hoyland, J., Huang, X., Mason, W. & Moor, R.M.. (1992). A Comparison of intercellular changes in porcine eggs after fertilization adn electroactivation. Development 115, 947–56.CrossRefGoogle Scholar
Swann, K., Igusa, Y. & Miyazaki, S.I.. (1989). Evidence for aninhibitory effect of protein kinase C on G-proteinmeediatd repetitive calcium transients in hamster eggs. Embo J. 8, 12.CrossRefGoogle Scholar
Takahashi, K. & Yoshida, M.. (1993). Mechanisms of cysteine and systine uptake into porcine oocytes matured in culture. In Proc. 87th Meeting jpm Soc. Zootech. Sci., abstr. 275.Google Scholar
vanBlerkom, J.. (1979). Molecular differentiation of the rabbit ovum. iii. Fertilization–autonomous polypeptide synthesis. Dev. Biol. 72, 188–94.CrossRefGoogle Scholar
Whalley, T., Crossley, I. & Whitaker, M.. (1991). Phosphoprotein inhibition of calcium-stimulated exocytosis in seaurchin egg. J. Cell. Biol. 113, 769–78.CrossRefGoogle Scholar
Yoshida, M., Ishigaki, K. & Pursel, V.G.. (1992). Effects of maturation media on male pronucleus formation in pig oocytes matured in vitro Mol. Reprod. Dev. 31, 68–71.CrossRefGoogle ScholarPubMed
Yoshida, M., Ishigaki, K., Nagai, T., Chikyu, M. & Pursel, V.G.. (1993). Glutathione concentration during maturationl and after ferrtilization in pig oocytes: relevance to the ability of oocyte to form male pronucleus. Biol. Reprod. 49,8994.CrossRefGoogle Scholar
Zeng, Y.S., & Sirard, M.A.. (1992). The effect of sera, bovine seerum albumina and follicular cells on the in vitro maturation and fertilizationl porcine oocytes. Theriogenology 37, 779–90CrossRefGoogle Scholar