Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T07:11:43.941Z Has data issue: false hasContentIssue false

Effects of wastewater treatment plant pollution on in-stream ecosystems functions in an agricultural watershed

Published online by Cambridge University Press:  20 June 2009

José-Miguel Sánchez-Pérez*
Affiliation:
CNRS; ECOLAB (Laboratoire Écologie Fonctionnelle), École Nationale Supérieure Agronomique de Toulouse (ENSAT), avenue de l'Agrobiopole, BP 32607, Auzeville Tolosane, 31326 Castanet Tolosan Cedex, France Université de Toulouse; INPT; UPS; ECOLAB (Laboratoire Écologie Fonctionnelle), 29 rue Jeanne Marvig, 31029 Toulouse, France
Magali Gerino
Affiliation:
Université de Toulouse; INPT; UPS; ECOLAB (Laboratoire Écologie Fonctionnelle), 29 rue Jeanne Marvig, 31029 Toulouse, France
Sabine Sauvage
Affiliation:
CNRS; ECOLAB (Laboratoire Écologie Fonctionnelle), École Nationale Supérieure Agronomique de Toulouse (ENSAT), avenue de l'Agrobiopole, BP 32607, Auzeville Tolosane, 31326 Castanet Tolosan Cedex, France Université de Toulouse; INPT; UPS; ECOLAB (Laboratoire Écologie Fonctionnelle), 29 rue Jeanne Marvig, 31029 Toulouse, France
Pascal Dumas
Affiliation:
CNRS; ECOLAB (Laboratoire Écologie Fonctionnelle), École Nationale Supérieure Agronomique de Toulouse (ENSAT), avenue de l'Agrobiopole, BP 32607, Auzeville Tolosane, 31326 Castanet Tolosan Cedex, France Université de Toulouse; INPT; UPS; ECOLAB (Laboratoire Écologie Fonctionnelle), 29 rue Jeanne Marvig, 31029 Toulouse, France
Éric Maneux
Affiliation:
CNRS; ECOLAB (Laboratoire Écologie Fonctionnelle), École Nationale Supérieure Agronomique de Toulouse (ENSAT), avenue de l'Agrobiopole, BP 32607, Auzeville Tolosane, 31326 Castanet Tolosan Cedex, France Université de Toulouse; INPT; UPS; ECOLAB (Laboratoire Écologie Fonctionnelle), 29 rue Jeanne Marvig, 31029 Toulouse, France
Frédéric Julien
Affiliation:
Université de Toulouse; INPT; UPS; ECOLAB (Laboratoire Écologie Fonctionnelle), 29 rue Jeanne Marvig, 31029 Toulouse, France
Peter Winterton
Affiliation:
Université de Toulouse; INPT; UPS; ECOLAB (Laboratoire Écologie Fonctionnelle), 29 rue Jeanne Marvig, 31029 Toulouse, France
Philippe Vervier
Affiliation:
CNRS; ECOLAB (Laboratoire Écologie Fonctionnelle), École Nationale Supérieure Agronomique de Toulouse (ENSAT), avenue de l'Agrobiopole, BP 32607, Auzeville Tolosane, 31326 Castanet Tolosan Cedex, France Université de Toulouse; INPT; UPS; ECOLAB (Laboratoire Écologie Fonctionnelle), 29 rue Jeanne Marvig, 31029 Toulouse, France
Get access

Abstract

We studied the effect of point-source and non-point-source pollution on the retention capacity of the stream and its link with the metabolic state (primary production and respiration) and invertebrates assemblages in a third order Mediterranean stream. Two experimental sites were chosen: one in the upper part of the catchment (Montégut site) characterized by low concentrations in nitrate and phosphate and one in the lower part of the catchment (Lézat site) characterized by high nitrate and phosphorus concentrations. Both experimental sites were located on reaches that included a Waste Water Treatment Plant (WWTP) point nutrient source allowing discussion of the relative effects of point-source and non-point-source nutrients loads on ecosystem function (respiration and uptake rates) and aquatic organism assemblages. NH4+-N, and PO43-P uptake rates were determined using solute additions conducted at constant rates (short-term nutrient addition procedure) and NO3-N uptake rates were determined using instantaneous solute addition (slug addition procedure). Rates of gross primary production (GPP) and ecosystem respiration were determined using the open system, two-stations diurnal oxygen change method. Benthic invertebrate communities were investigated for species and functional feeding groups diversities measurements. Results show that autotrophy in the river results from nutrients of two distinct origins: point sources for phosphorus (urban area and WWTP) and non-point sources for nitrogen (agricultural zones) with local additions from WWTP inputs. Comparison between the two sites shows that the WWTP did not affect uptake rates, respiration or primary production of the ecosystem in the low-nutrient Montégut reach despite increase of invertebrates communities biomass density. Inputs from the WWTP, in the high nitrate and phosphate Lézat reach, increased respiration, lower benthic biomass and led to changes in the species composition and did not affect uptake rates.

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Billen G. and Garnier J., 1999. Nitrogen transfers through the Seine drainage network: a budget based on the application of the ‘Riverstrahler’ model. Hydrobiologia, 410, 139–150.
Boström, B., Jansson, M. and Forsberg, C., 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. , 18, 559.
Broberg, O. and Persson, G., 1988. Particulate and dissolved phosphorus forms in freshwater: composition and analysis. Hydrobiologia , 170, 6190. CrossRef
Butturini, A. and Sabater, F., 1998. Ammonium and phosphate retention in a Mediterranean stream: hydrological versus temperature control. Can. J. Fish. Aquat. Sci. , 55, 19381945. CrossRef
Chapin, F.S., Sala, O.E., Burke, I.C., Grime, J.P., Hooper, D.U., Lauenroth, W.K., Lombard, A., Mooney, H.A., Mosier, A.R., Naeem, S., Pacala, S.W., Roy, J., Steffen, W.L. and Tilman, D., 1998. Ecosystem consequences of changing biodiversity: experimental evidence and a research agenda for the future. Bioscience , 48, 4552. CrossRef
Chapra, S.C., Canale, R.P. and Amy, G.L., 1997. Empirical models for disinfection by-products in lakes and reservoirs. J. Environ. Engineering-ASCE , 123, 714715. CrossRef
Crenshaw, C.L., Valett, H.M. and Webster, J.R., 2002. Effects of augmentation of coarse particulate organic matter on metabolism and nutrient retention in hyporheic sediments. Freshwat. Biol. , 47, 18201831. CrossRef
Dent, C.L. and Grimm, N.B., 1999. Spatial heterogeneity of stream water nutrient concentrations over successional time. Ecology , 80, 22832298. CrossRef
Dorioz, J.M. and Ferhi, A., 1994. Non-point pollution and management of agricultural areas: phosphorus and nitrogen transfer in an agricultural watershed. Wat. Res. , 28, 395410. CrossRef
Fisher, S.G., Grimm, N.B., Marti, E., Holmes, R.M. and Jones, J.B., 1998. Material spiraling in stream corridors: A telescoping ecosystem model. Ecosystems , 1, 1934. CrossRef
Gordon N.D., McMahon T.A. and Finlayson B.L., 1994. Stream hydrology, John Wiley & Sons, West Sussex, England, 526 p.
Guasch, H., Armengol, J., Martí, E. and Sabater, S., 1998. Diurnal variation in dissolved oxygen and carbon dioxide in two low-order streams. Wat. Res. , 32, 10671074. CrossRef
Gücker B. and Pusch M.T., 2006. Regulation of nutrient uptake in eutrophic lowland streams. Limnol. Oceanogr., 51, 1443–1453.
Haggard, B.E., Storm, D.E. and Stanley, E.H., 2001. Effects of a point source input on stream nutrient retention. J. Am. Water Resour. Assoc. , 37, 12911299. CrossRef
Haggard, B.E., Stanley, E.H. and Storm, D.E., 2005. Nutrient retention in a point-source-enriched stream. J. N. Am. Benthol. Soc. , 24, 2947. 2.0.CO;2>CrossRef
Hickey, C.W., 1988. River oxygen uptake and respiratory decay of sewage fungus biofilms. Wat. Res. , 22, 13751380. CrossRef
House, W.A., Leach, D.V. and Armitage, P.D., 2001. Study of dissolved silicon and nitrate dynamics in a freshwater stream. Wat. Res. , 35, 27492757. CrossRef
Isaacs W.P. and Gaudy A.F., Jr., 1968. Atmospheric oxygenation in a simulated stream. J. Sanit. Eng. Div., Proc. ASCE, 94, 319–344.
Izagirre, O. and Elosegui, A., 2005. Environmental control of seasonal and inter-annual variations of periphytic biomass in a North Iberian stream. Ann. Limnol. - Int. J. Lim. , 41, 3546. CrossRef
Lefebvre, S., Marmonier, P. and Peiry, J.L., 2006. Nitrogen dynamics in rural streams: differences between geomorphologic units. Ann. Limnol. - Int. J. Lim. , 42, 4353. CrossRef
Martí E. and Sabater F., 1996. High variability in temporal and spatial nutrient retention in Mediterranean streams. Ecology, 77, 854–869.
Martí, E., Aumatell, J., Godé, L., Poch, M. and Sabater, F., 2004. Nutrient retention efficiency in streams receiving inputs from wastewater treatment plants. J. Environ. Qual. , 33, 285293. CrossRef
Marzolf, E.R., Mulholland, P.J. and Steiman, A.D., 1994. Improvements to diurnal upstream-downstream dissolved oxygen change technique for determining whole stream metabolism in small streams. Can. J. Fish. Aquat. Sci. , 51, 15911599. CrossRef
Merrit R.W. and Cummins K.W., 1984. An introduction to the aquatic insects of North America, 722 p.
Merrit R.W. and Cummins K.W., 1996. Methods in stream ecology, Academic Press, London.
Merseburger G.C., Martí E. and Sabater F., 2005. Net changes in nutrient concentrations below a point source input in two streams draining catchments with contrasting land uses. Sci. Total Environ., 347, 217–229.
Miserendino, M.L., 2007. Macroinvertebrate functional organization and water quality in a large arid river from Patagonia (Argentina). Ann. Limnol. - Int. J. Lim. , 43, 133145. CrossRef
Mulholland P.J., Fellows C.S., Tank J.L., Grimm N.B., Webster J.R., Hamilton S.K., Martí E., Ashkenas L., Bowden W.B., Dodds W.K., McDowell W.H., Paul M.J. and Peterson B.J., 2001. Inter-biome comparison of factors controlling stream metabolism. Freshwat. Biol., 46, 1503–1517.
Newbold, J.D., Elwood, J.W., O'Neill, R.V. and Van Winkle, W., 1981. Measuring nutrient spiralling in streams. Can. J. Fish. Aquat. Sci. , 38, 860863. CrossRef
O’Connor, D.J. and Dobbins, W.E., 1958. Mechanism of reaeration in natural streams. Trans. Amer. Soc. Chem. Eng. , 123, 641684.
Odum, H.T., 1956. Primary production in flowing water. Limnol. Oceanogr. , 1, 102117. CrossRef
Owens, M., Edwards, R.W. and Gibbs, J.W., 1964. Some reaeration studies in stream. Int. J. Air. Wat. Poll. , 8, 469486.
Paul, M.J. and Meyer, J.L., 2001. Streams in the urban landscape. Ann. Rev. Ecol. Syst. , 32, 333365. CrossRef
Pennak R.W., 1978. Fresh-water invertebrates of the United States, Wiley-Interscience, 788 p.
Prenda, J. and Gallardo-Mayenco, A., 1996. Self-purification, temporal variability and the macroinvertebrate community in small lowland Mediterranean streams receiving crude domestic sewage effluents. Arch. Hydrobiol. , 136, 159170.
Probst, J.L., 1985. Nitrogen and phosphorus exportation in the Garonne Basin (France). J. Hydrol. , 76, 281305. CrossRef
Puig M.A., 1999. Els macroinvertebrats dels rius Catalans, Guia illustrada, 245 p.
Rathbun, R.E., Stephens, D.W., Schultz, D.J. and Tai, D.Y., 1978. Laboratory studies of gas tracer for reaeration. Proc. ASCE , 104, 215219.
Rodier J., 1996. L'analyse de l'eau : eaux naturelles, eaux résiduaires, eau de mer, Dunod, Paris, 1383 p.
Ruggiero, A., Solimini, A.G. and Carchini, G., 2006. Effects of a waste water treatment plant on organic matter dynamics and ecosystem functioning in a Mediterranean stream. Ann. Limnol. - Int. J. Lim. , 42, 97107. CrossRef
Stream Solute Workshop, , 1990. Concepts and methods for assessing solute dynamics in stream ecosystems. J. N. Amer. Benthol. Soc. , 9, 95119. CrossRef
Tachet H., Richoux P., Bournaud M. and Usseglio-Polatera P., 2000. Invertébrés d’eau douce : systématique, biologie, écologie, CNRS Éditions, 587 p.
Thyssen, N., Erlandsen, M. and Jeppensen, E., 1987. Reaeration oxygen in shallow macrophyte-rich streams. Int. Rev. Ges. Hydrobiol. , 72, 405429. CrossRef
Turlan, T., Birgand, F. and Marmonier, P., 2007. Comparative use of field and laboratory mesocosms for in-stream nitrate uptake measurement. Ann. Limnol. - Int. J. Lim. , 43, 4151. CrossRef
Turner, B.L., Baxter, R. and Whitton, B.A., 2003. Nitrogen and phosphorus in soil solution and drainage streams in Upper Teesdale, northern England: implication of organic compounds for biological nutrient limitation. Sci. Tot. Environ. , 314–316, 153170. CrossRef
Valett, H.M., Dahm, C.N., Campana, M.E., Morrice, J.A., Baker, M.A. and Fellows, C.S., 1997. Hydrologic influences on groundwater – surface water ecotones: Heterogeneity in nutrient composition and retention. J. N. Amer. Benthol. Soc. , 16, 239247. CrossRef
Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H. and Tilman, D.G., 1997. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. , 7, 737750.
Wang, H., Hondzo, M., Xu, C., Poole, V. and Spacie, A., 2003. Dissolved oxygen dynamics of streams draining an urbanized and agricultural catchment. Ecol. Model. , 160, 145161. CrossRef
Young, R.G. and Huryn, A.D., 1998. Comment: Improvements to diurnal upstream-downstream dissolved oxygen change technique for determining whole stream metabolism in small streams. Can. J. Fish. Aquat. Sci. , 55, 17841785. CrossRef