Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T21:38:46.063Z Has data issue: false hasContentIssue false

Assessment of the Insertion of Reprocessed Fuels and Combined Thorium Fuel Cycles in a PWR System

Published online by Cambridge University Press:  13 February 2015

Fabiana. B. A. Monteiro
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais Avenida Antônio Carlos, 6627, Pampulha 31270-901 – Belo Horizonte, Tel/Fax: 55-31-34096662, MG, Brasil Instituto Nacional de Ciências e Tecnologia de Reatores Nucleares Inovadores/CNPq, Brazil
Rochkhudson. B. de Faria
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais Avenida Antônio Carlos, 6627, Pampulha 31270-901 – Belo Horizonte, Tel/Fax: 55-31-34096662, MG, Brasil
Ângela Fortini
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais Avenida Antônio Carlos, 6627, Pampulha 31270-901 – Belo Horizonte, Tel/Fax: 55-31-34096662, MG, Brasil
Clarysson A. M. Da Silva
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais Avenida Antônio Carlos, 6627, Pampulha 31270-901 – Belo Horizonte, Tel/Fax: 55-31-34096662, MG, Brasil
Cláubia Pereira*
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais Avenida Antônio Carlos, 6627, Pampulha 31270-901 – Belo Horizonte, Tel/Fax: 55-31-34096662, MG, Brasil Instituto Nacional de Ciências e Tecnologia de Reatores Nucleares Inovadores/CNPq, Brazil
Get access

Abstract

The insertion of reprocessed fuel spiked with thorium in a typical PWR fuel element considering (TRU-Th) cycle was simulated using different fissile materials that varied from 5.5% to 7.0%. The reprocessed fuels were obtained using the ORIGEN 2.1 code from a burned PWR standard fuel (33,000 MWd/tHM burned), with 3.1% of initial enrichment, which was remained in the cooling pool for five years and then reprocessed using UREX+ technique. The kinf, hardening spectrum and the fuel evolution during the burnup were evaluated. This study was performed using the SCALE 6.0

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Maiorino, J. R. and Carluccio, T., “A Review of Thorium Utilization as an option for Advanced Fuel Cycle- Potential Option for Brazil in the Future”, ANES 2004: Americas Nuclear Energy Symposium, Miami Beach, Florida, 36 October (2004).Google Scholar
Pinheiro, R.B., Carneiro, F.A.N., Lameiras, F.S., Ferreira, R.A.N., Ferraz, W.B., Dias, M.S., Soares, M.L.L., de Andrade, E.P., Mascarenhas, H.A., dos Santos, A.M.M, Pinto, L.C.M., Santos, A., Filgueiras, S.A.C., de O. Lopes, M.J., Peehs, M., Scholosser, G., Wunderlich, F., Gross, H., Doer, W., Gartner, M., Kaspar, G., Finnemann, H., Porsch, D., Hrovat, M., Kadner, M., Marly, V., Reichardt, K., Brodda, B.G., Zimmer, E., “Final Report (1979-1988)”, German-Brazilian Cooperation in Scientific Research and Technological Development, Program of Research and Development on the Thorium Utilization in PWRs, Herausgegeben Von Der Kernforschungsanlage Julich GmbH, ZENTRALBIBLIOTHEK Titelsatz: Graphische Betriebe Der KFA, page 31, 1988.Google Scholar
IAEA, “Spent Fuel Reprocessing Options”, Nuclear Fuel Cycle and Materials Section International Atomic Energy Agency (2008).Google Scholar
Weaver, K. D. and Herring, J. S., “Performance of Thorium-Based Mixed Oxide Fuels for the Consumption of Plutonium in Current and Advanced ReactorsInternational Congress On Advanced Nuclear Power Plants (ICAPP) 2002 ANS Annual Meeting June 9, 2002.Google Scholar
Pereira, Claubia ; LEITE, EUZIMAR M. ; FARIA, EDUARDO F.. Waste analysis generated by alternative reprocessing fuels from pressurised water reactions. Annals of Nuclear Energy, v. 27, p. 449464, 2000.CrossRefGoogle Scholar
Pereira, C. ; LEITE, E. M.. Non-Proliferating Reprocessed Nuclear Fuels In Pressurized Water Reactors: Fuel Cycle Options. Annals of Nuclear Energy, Grã-Bretanha, v. 25, n.12, p. 937962, 1998.CrossRefGoogle Scholar
Pereira, C. ; COTA, S. D. S.. Neutronic Evaluation Of The Nonproliferating Reprocessed Nuclear Fuelsin Pressurized Water Reactors.. Annals of Nuclear Energy, Grã-Bretanha, v. 24, n.10, p. 829834, 1997.CrossRefGoogle Scholar
Cota, S. and Pereira, C., “Neutronic evaluation of the non-proliferating reprocessed nuclear fuels in pressurized water reactors,” Annals of Nuclear Energy, vol. 24, no. 10, pp. 829834 (1997).CrossRefGoogle Scholar
, M. F. SIMPSON and , J. D. LAW. “Nuclear Fuel Reprocessing”. INL/EXT-10-17753. Fuel Cycle Science and Technology Division. Idaho National Laboratory. Idaho Falls, Idaho 83415. February (2010).Google Scholar
ARGONNE NATIONAL LABORATORY. “Lab-Scale Demonstration of the UREX+ Process”. WM’04 Conference, February 29 – March 4, Tucson, AZ. USA (2004).Google Scholar
FEENDER, J. S.. “Safeguards for the Uranium Extraction (UREX) +1A Process”. Thesis Submitted and Approved by the Office of Graduate Studies of Texas A&M University. May (2010).Google Scholar
Lung, M., “A Present Review of the Thorium Nuclear Fuel Cycle”, Nuclear science and Technology European Commission (1997).Google Scholar
Romanello, V., Savatores, M., Schwenk-Ferrero, A., Gabrielli, F., Maschev, W., Vessonji, B., “Comparative Study of Fast Critical Burner Reactor and Subcritical Accelerator Driven Systems and the Impact on Transuranics Inventory in a Regional Fuel Cycle”, Elsevier, Nuclear Engineering and Design, vol. 241, pp. 433443 (2011).GfgfhfhGoogle Scholar
Croff, A. G., A User's Manual for the ORIGEN2 Computer Code, Oak Ridge National Laboratory, Report ORNL/TM-7175 (1980).CrossRefGoogle Scholar
ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT. NUCLEAR ENERGY AGENCY. “Burn-up Credit Criticality Benchmark. Phase IV-A. Reactivity Prediction Calculations for Infinite Arrays of PWR MOX Fuel Pin Cells”. NEA/NSC/DOC(2003)3. ISBN 92-64-02123-X. France (2003).Google Scholar
Oak Ridge National Laboratory, SCALE Cross-Section Libraries, ORNL/TM-2005/39, Version 6, Vol. III, Sect. M4, January (2009).Google Scholar
Eletrobrás Termonuclear, S.A., “Final safety Analysis Report – FSAR Angra 2”, Eletronuclear, Rio de Janeiro (1999).Google Scholar
Bowman, S. M., “KENO-VI Primer: A Primer for Criticality Calculations with SCALE/KENO - VI Using GeeWiz”, ORNL/TM-2008/069.CrossRefGoogle Scholar
Goluoglu, S., Hollenbach, D. F. and Petrie, L. M., “CSAS6: Control Module For Enhanced Criticality Safety Analysis With KENO-VI”, ORNL/TM-2008/039.Google Scholar
DeHart, M. D., “Triton: a two-dimensional transport and depletion module for characterization of spent nuclear fuel”, ORNL/TM-2005/39, Version 6, Vol. I, Sect. T1, Nuclear Science and Technology Division.Google Scholar
Petrie, L. M., Fox, P. B., Lucius, K., “Standard Composition Library”, ORNL/TM-2005/39, Version 6,Vol. III, Sect. M8, Nuclear Science and Technology Division.Google Scholar