Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T06:45:27.526Z Has data issue: false hasContentIssue false

The Influence of Frequency and Pressure on the Material Quality of PECVD A-SI:H

Published online by Cambridge University Press:  15 February 2011

W.G.J.H.M. Van Sark
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Universiteit Utrecht, P.O. Box 80.000, NL-3508 TA Utrecht, the Netherlands
J. Bezemer
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Universiteit Utrecht, P.O. Box 80.000, NL-3508 TA Utrecht, the Netherlands
E. M. B. Heller
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Universiteit Utrecht, P.O. Box 80.000, NL-3508 TA Utrecht, the Netherlands
M. Kars
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Universiteit Utrecht, P.O. Box 80.000, NL-3508 TA Utrecht, the Netherlands
W. F. Van Der Weg
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Universiteit Utrecht, P.O. Box 80.000, NL-3508 TA Utrecht, the Netherlands
Get access

Abstract

A systematic study of material quality has been performed for a-Si:H layers deposited by plasma enhanced chemical vapour deposition at frequencies between 30–80 MHz. The effect of frequency variation was studied in combination with the variation of pressure and power density. The process conditions were optimised not only for ‘device quality’ opto-electronic properties but also for a uniformity in layer thickness better than 5 %. For every frequency an optimum pressure exists for which the properties of the deposited layer satisfy the ‘device quality’ requirements. A clear correlation is observed between the transition from the so-called α- to the γ-regime of the plasma and the dependence of the deposition rate γd with pressure pand frequency ƒ: γ d ∝ pƒ2/3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Street, R. A., Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, U.K., 1991).Google Scholar
2. Luft, W. and Tsuo, Y. S., Hydrogenated amorphous silicon alloy deposition processes (Marcel Dekker, Inc., New York, NY, USA, 1993).Google Scholar
3. Curtins, H., Wyrsch, N., and Shah, A. V., Electron. Lett. 23, 228 (1987).Google Scholar
4. Shah, A., Dutta, J., Wyrsch, N., Prasad, K., Curtins, H., Finger, F., Howling, A., and Hollenstein, C., Mater. Res. Soc. Symp. Proc. 258, 15 (1992).Google Scholar
5. Heintze, M. and Zedlitz, R., J. Non-Cryst. Solids 164–166, 55 (1993).Google Scholar
6. Perrin, J., Roca i Cabarrocas, P., Allain, B., and Friedt, J.-M., Jpn. J. Appl. Phys. 27, 2041 (1988).Google Scholar
7. Stap, C. A. M., Meiling, H., Landweer, G., Bezemer, J., and van der Weg, W. F., in Proceedings of the Ninth E.C. Photovoltaic Solar Energy Conference, Freiburg, F.R. G., 1989, edited by Palz, W., Wrixon, G. T., and Helm, P. (Kluwer Academic, Dordrecht, the Netherlands, 1989), p. 74.Google Scholar
8. Klazes, R. H., van den Broek, M. H. L. M., Bezemer, J., and Radelaar, S., Philos. Mag. B 45, 377 (1982).Google Scholar
9. Chatham, H. and Bhat, P. K., Mater. Res. Soc. Symp. Proc. 149, 447 (1989).Google Scholar
10. Bezemer, J., van Sark, W. G. J. H. M., von der Linden, M. B., and van der Weg, W. F., in Proceedings of the Twelfth E.C. Photovoltaic Solar Energy Conference, Amsterdam, the Netherlands, 1994, edited by Hill, R., Palz, W., and Helm, P. (H.S. Stephens & Associates, Bedford, UK, 1994), p. 327.Google Scholar
11. Bezemer, J. and van Sark, W. G. J. H. M., in Proceedings of the 8th International School on Condensed Matter Physics (ISCMP), Varna, Bulgaria, 1994 (British Research Studies, London, U.K., in press).Google Scholar
12. Howling, A. A., Dorier, J.-L., Hollenstein, C., Kroll, U., and Finger, F., J. Vac. Sci. Technol. A 10, 1080 (1992).Google Scholar
13. Beneking, C., J. Appl. Phys. 68, 4461 (1990).Google Scholar
14. Beneking, C., J. Appl. Phys. 68, 5435 (1990).Google Scholar
15. Beneking, C., Finger, F., and Wagner, H., in Proceedings of the 11th European Photovoltaic Solar Energy Conference, Montreux, Switzerland, edited by Guimarães, L., Palz, W., de Reyff, C., Kiess, H., and Helm, P. (Harwood, Chur, Switzerland, 1993), p. 586.Google Scholar
16. Colgan, M. J., Meyyappan, M., and Murnick, D. E., Plasma Sources Sci. Technol. 3, 181 (1994).Google Scholar
17. Kroll, U., Ziegler, Y., Meier, J., Keppner, H., and Shah, A., Mater. Res. Soc. Symp. Proc. 336, 115 (1994).Google Scholar
18. Passchier, J. D. P., Ph.D. thesis, Universiteit Utrecht, 1994.Google Scholar
19. Fivaz, M., Brunner, S., Swarzenbach, W., Howling, A. A., and Höllenstein, C., Plasma Sources Sci. Technol. (in press).Google Scholar
20. van den Boogaard, M. J. (unpublished results).Google Scholar